Enhancing corrosion resistance in concrete structures using Euphorbia Tortilis cactus extract by non-destructive testing

Autori

DOI:

https://doi.org/10.62638/ZasMat1197

Apstrakt

This research investigates the corrosion resistance of reinforced concrete structures, a crucial aspect for ensuring their long-term performance and sustainability. Utilizing both the half-cell potential method and an accelerated corrosion test, the study introduces a novel approach by incorporating Euphorbia Tortilis Cactus (ETC) extract as an organic additive in concrete. The half-cell potential method involves measuring potential differences between steel reinforcement and an external electrode in a Cu/CuSO4 solution, revealing varied corrosion inhibition levels in different specimens. Notably, the introduction of ETC extract demonstrates unprecedented resistivity, showcasing a mere 10% probability of corrosion, even in atmospheric conditions. The accelerated corrosion test further emphasizes the novelty of the research. ETC concrete exhibits lower applied current and mass loss percentages compared to control mixes, indicating superior corrosion resistance and reduced porosity. This novel use of ETC extract in concrete enhances its durability and sustainability, providing valuable insights for developing resilient concrete structures amid increasing concerns about corrosion-induced deterioration in reinforced concrete constructions.

Ključne reči:

Corrosion Resistance , Concrete Structures, Euphorbia Tortilis Cactus, Organic Additive, Sustainability

Reference

Y. Song, K. Chetty, U. Garbe, J. Wei, H. Bu, L. O'moore,...G.Jiang (2021) A novel granular sludge-based and highly corrosion-resistant bio-concrete in sewers. Science of The Total Environment, 791, 148270.

https://doi.org/10.1016/j.scitotenv.2021.148270

N. Roghanian, N. Banthia (2019) Development of a sustainable coating and repair material to prevent bio-corrosion in concrete sewer and waste-water pipes. Cement and Concrete Composites, 100, 99-107. https://doi.org/10.1016/j.cemconcomp.2019.03.026

S. Fedosov, S. Loginova (2020) Mathematical model of concrete biological corrosion. Magazine of Civil Engineering, 7, 9906-9906.

https://doi.org/10.18720/MCE.99.6

R. Mohanraj, S. Senthilkumar, P. Padmapoorani (2022) Mechanical properties of RC beams With AFRP sheets under a sustained load. Materials and Technology, 56(4), 365–372.

https://doi.org/10.17222/mit.2022.481

J. Strigáč, P. Martauz, A. Eštoková, N. Števulová, A.Luptáková (2016) Bio-corrosion resistance of con-cretes containing antimicrobial ground granulated blastfurnace slag BIOLANOVA and novel hybrid H-CEMENT. Solid State Phenomena, 244, 57-64.

https://doi.org/10.4028/www.scientific.net/SSP.244.57

K. Yuvaraj, S. Ramesh, M. Velumani (2023) Predicting the mechanical strength of coal pond ash based geopolymer concrete using linear regression method. Materials Today: Proceedings.

https://doi.org/10.1016/j.matpr.2023.04.514

M. Kanwal, F. Adnan, R. A. Khushnood, A. Jalil, H. A. Khan, A. G. Wattoo, S. Rasheed (2023) Biomineralization and corrosion inhibition of steel in simulated bio-inspired self-healing concrete. Journal of Building Engineering, 82, 108224.

https://doi.org/10.1016/j.jobe.2023.108224

V. Shubina, L. Gaillet, T. Chaussadent, T. Meylheuc, J. Creus (2016) Biomolecules as a sustainable protection against corrosion of reinforced carbon steel in concrete. Journal of Cleaner Production, 112, 666-671.

https://doi.org/10.1016/j.jclepro.2015.07.124

R. Mohanraj, S. Senthilkumar, S. Shanmugasu-ndaram, P. Padmapoorani (2022) Torsional performance of reinforced concrete beam with carbon fiber and aramid fiber laminates. Revista de la Construcción. Journal of Construction, 21(2), 329-337. https://doi.org/10.7764/RDLC.21.2.329

H. Mohammed, M. Ortoneda-Pedrola, I. Nakouti, A. Bras (2020) Experimental characterisation of non-encapsulated bio-based concrete with self-healing capacity. Construction and Building Materials, 256, 119411.

https://doi.org/10.1016/j.conbuildmat.2020.119411

K. Kawaai, T. Nishida, A. Saito, T. Hayashi (2022) Application of bio-based materials to crack and patch repair methods in concrete. Construction and Building Materials, 340, 127718.

https://doi.org/10.1016/j.conbuildmat.2022.127718

S. V. Fedosov, V. E. Roumyantseva, S. A. Loginova, I. N. Goglev (2021) Experimental Research of the Process Bio-corrosion of Cement Concrete for Inspection of Building Structures. International Conference Industrial and Civil Construction (pp. 168-175). Cham: Springer International Publishing.https://doi.org/10.1007/978-3-030-68984-1_25

R. Vasanthi, R. Baskar (2017) Corrosion Based Durability Study in Concrete Using Biominerali-zation. Int J CivEngTechnol, 8(9), 680-91.

R. Jakubovskis, A. Jankutė, J. Urbonavičius, V. Gribniak (2020) Analysis of mechanical performance and durability of self-healing biological concrete. Construction and Building Materials, 260,119822.

https://doi.org/10.1016/j.conbuildmat.2020. 119822

M. Velumani, R. Mohanraj, R. Krishnasamy, K. Yuvaraj (2023) Durability Evaluation of Cactus-Infused M25 Grade Concrete as a Bio-Admixture. PeriodicaPolytechnica Civil Engineering,67(4), 1066-1079.

https://doi.org/10.3311/PPci.22050

Y. Yogeswaran, M. I.Juki (2022) The Effect of Bacteria to Steel Corrosion in Concrete: A Systematic Review. Recent Trends in Civil Engineering and Built Environment, 3(1), 272-280.

R. Javaherdashti, H. Nikraz, M. Borowitzka, N. Moheimani, M.Olivia, (2009) On the impact of algae on accelerating the biodeterioration/ biocorrosion of reinforced concrete: a mechanistic review. European Journal of Scientific Research, 36(3), 394-406.

J. M. Irwan, T. Teddy (2017) An overview of bacterial concrete on concrete durability in aggressive environment. Pertanika J SciTechnol, 25, 259-264.

C. C. Gaylarde, B. O. Ortega-Morales (2023) Biodeterioration and Chemical Corrosion of Concrete in the Marine Environment: Too Complex for Prediction. Microorganisms, 11(10), 2438.

https://doi.org/10.3390/microorganisms11102438

D. Merachtsaki, E. C. Tsardaka, E. K. Anastasiou, H. Yiannoulakis, A. Zouboulis (2021) Comparison of different magnesium hydroxide coatings applied on concrete substrates (sewer pipes) for protection against bio-corrosion. Water, 13(9), 1227-1235.

https://doi.org/10.3390/w13091227

O. Agboola, K. W. Kupolati, O. S. I. Fayomi, A. O. Ayeni, A. Ayodeji, J. J. Akinmolayemi, ...K. M. Oluwasegun (2022) A Review on corrosion in concrete structure: inhibiting admixtures and their compatibility in concrete. Journal of Bio-and Tribo-Corrosion, 8(1), 25. https://doi.org/10.1007/s40735-021-00624-2

G. Fytianos, V. Baltikas, D. Loukovitis, D. Banti, A. Sfikas, E. Papastergiadis, P. Samaras (2020) Biocorrosion of concrete sewers in Greece: current practices and challenges. Sustainability, 12(7), 2638.

https://doi.org/10.3390/su12072638

R. Mohanraj, R. Krishnasamy (2024) Enhancing Concrete Flexural Behaviour with Euphorbia Tortilis Cactus: Sustainable Additive for Improved Load-Carrying Capacity and Ductility. Indian Journal of Engineering & Materials Sciences, 31(3), 388-396. https://doi.org/10.56042/ijems.v31i3.6667

K. Gopalakrishnan, R. Mohanraj, S. Southamirajan, S. Ramkumar (2024) Characterization of Euphorbia Tortilis Cactus Concrete Specimen by 3D X-ray Tomography. Russian Journal of Nondestructive Testing, 60(6), 692–698.

https://doi.org/10.1134/S1061830924601892

M.Seifan, A. K. Samani, A. Berenjian (2016) Bioconcrete: next generation of self-healing concrete. Applied microbiology and biotechnology, 100, 2591-2602.

https://doi.org/10.1007/s00253-016-7316-z

R. Mohanraj, K. Vidhya (2024) Evaluation of compressive strength of Euphorbia tortilis cactus infused M25 concrete by using ABAQUS under static load. Materials Letters, 356, 135600.

https://doi.org/10.1016/j.matlet.2023.135600

R. P. George, V. Vishwakarma, S. S. Samal, U. K. Mudali (2012) Current understanding and future approaches for controlling microbially influenced concrete corrosion: a review. Concrete research letters, 3(3), 491-506.

S. V. Reddy, A. K. Satya, S. M. Rao, M. Azmatunnisa (2012) A biological approach to enhance strength and durability in concrete structures. International journal of advances in engineering & technology, 4(2), 392.

Y. Kandasamy, B. Thangavel, K.K. Sukumar, B. Ravi(2024) Strength properties of engineered cementitious composites containing pond ash and steel fiber. Matéria (Rio de Janeiro), 29(1), e20230277.

https://doi.org/10.1590/1517-7076-rmat-2023-0277

K. Yuvaraj, S. Ramesh (2022) Performance study on strength, morphological, and durability chara¬cteristics of coal pond ash concrete. International Journal of Coal Preparation and Utilization, 42(8), 2233-2247.

https://doi.org/10.1080/19392699.2022.2101457

J. Monteny, E. Vincke, A. Beeldens, N. De Belie, L. Taerwe, D. Van Gemert, W. Verstraete (2000) Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concre-te. Cement and Concrete Research, 30(4), 623-634. https://doi.org/10.1016/S0008-8846(00)00219-2

P. Padmapoorani, S. Senthilkumar, R. Mohanraj (2023) Machine Learning Techniques for Structural Health Monitoring of Concrete Structures: A Systematic Review. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(4), 1919-1931. https://doi.org/10.1007/s40996-023-01054-5

K. Ravikumar, C. J. Singaram, S. Palanichamy, M. Rajendran (2024) Testing and Evaluation of Buckling and Tensile Performance of Glass Fiber–reinforced polymer Angle Section with Different Joints/Connections. Journal of Testing and Evaluation, 52(1). 621-638.

http://doi.org/10.1520/JTE20230010

J. Xu, Y. Tang, X. Wang, Z. Wang, W. Yao (2020) Application of ureolysis-based microbial CaCO3 precipitation in self-healing of concrete and inhibi¬tion of reinforcement corrosion. Construction and Building Materials, 265, 120364.

https://doi.org/10.1016/j.conbuildmat.2020.120364

M. Kanwal, R. A. Khushnood, A. G. Wattoo, M. Shahid (2023) Improved anti-corrosion and mechanical aspects of reinforced cementitious composites with bio-inspired strategies. Journal of Building Engineering, 70, 105930.

https://doi.org/10.1016/j.jobe.2023.105930

B. Huber, H. Hilbig, J. E. Drewes, E. Müller (2017) Evaluation of concrete corrosion after short-and long-term exposure to chemically and microbially generated sulfuric acid. Cement and Concrete Research, 94, 36-48.

https://doi.org/10.1016/j.cemconres.2017.01.005

R. Mohanraj, S. Senthilkumar, Prince Goel, Ronak Bharti (2023) A state-of-the-art review of Euphorbia Tortilis cactus as a bio-additive for sustainable construction materials. Materials Today: Proceedings.

https://doi.org/10.1016/j.matpr.2023.03.762

X. Sun, O. W. Wai, J. Xie, X. Li (2023) Biomineralizationto Prevent Microbially Induced Corrosion on Concrete for Sustainable Marine Infrastructure. Environmental Science & Technology

https://doi.org/10.1021/acs.est.3c04680

M. B. E. Khan, L. Shen, D. Dias-da-Costa (2021) Self-healing behaviour of bio-concrete in submer¬ged and tidal marine environments. Construction and Building Materials, 277, 122332.

https://doi.org/10.1016/j.conbuildmat.2021.122332

E. Vincke, S. Verstichel, J. Monteny, W. Verstraete (1999) A new test procedure for biogenic sulfuric acid corrosion of concrete. Biodegradation, 10, 421-428. https://doi.org/10.1023/A:1008309320957

Y. Kandasamy, V. Kumarasamy, P. Thirumoorthy, S. Murugan, R. Subramani (2021) Mechanical, Mine-ralogical and Durability Properties of Pulverized Pond Ash Based Concrete. Materials Science.

https://doi.org/10.15244/pjoes/170852

M. Mirshahmohammad, H. Rahmani, M. Maleki-Kakelar, A. Bahari (2022) Effect of sustained service loads on the self-healing and corrosion of bacterial concretes. Construction and Building Materials, 322, 126423.

https://doi.org/10.1016/j.conbuildmat.2022.126423

T. Noeiaghaei, A. Mukherjee, N. Dhami, S. R. Chae (2017) Biogenic deterioration of concrete and its mitigation technologies. Construction and Building Materials, 149, 575-586.

https://doi.org/10.1016/j.conbuildmat.2017.05.144

S. Joshi, S. Goyal, M. S. Reddy (2021) Bio-consolidation of cracks with fly ash amended biogrouting in concrete structures. Construction and Building Materials, 300, 124044.

https://doi.org/10.1016/j.conbuildmat.2021.124044

K. Ravikumar, S. Palanichamy, C. J. Singaram, M. Rajendran (2023) Crushing performance of pultruded GFRP angle section with various connections and joints on lattice towers. Matéria (Rio de Janeiro), 28, e20230003.

https://doi.org/10.1590/1517-7076-RMAT-2023-0003

C. S. S. Durga, N. Ruben, M. S. R. Chand, C. Venkatesh (2020) Performance studies on rate of self healing in bio concrete. Materials Today: Proceedings, 27, 158-162.

https://doi.org/10.1016/j.matpr.2019.09.151

B. Chaudhari, B. Panda, B. Šavija, S. Chandra Paul (2022) Microbiologically Induced Concrete Corro¬sion: A Concise Review of Assessment Methods, Effects, and Corrosion-Resistant Coating Materials. Materials, 15(12), 4279.

https://doi.org/10.3390/ma15124279

C. Grengg, F. Mittermayr, N. Ukrainczyk, G. Koraimann, S. Kienesberger, M. Dietzel (2018) Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review. Water research, 134, 341-352.

https://doi.org/10.1016/j.watres.2018.01.043

T. Haile, G. Nakhla, E. Allouche, S. Vaidya (2010) Evaluation of the bactericidal characteristics of nano-copper oxide or functionalized zeolite coating for bio-corrosion control in concrete sewer pipes. Corrosion Science, 52(1), 45-53.

https://doi.org/10.1016/j.corsci.2009.08.046

M. Wu, T. Wang, K. Wu, L. Kan (2020) Microbiologically induced corrosion of concrete in sewer structures: A review of the mechanisms and phenomena. Construction and Building Materials, 239, 117813.

https://doi.org/10.1016/j.conbuildmat.2019.117813

K. Chetty, S. Xie, Y. Song, T. McCarthy, U. Garbe, X. Li, G. Jiang (2021) Self-healing bioconcrete based on non-axenic granules: A potential solution for concrete wastewater infrastructure. Journal of Water Process Engineering, 42, 102139.

https://doi.org/10.1016/j.jwpe.2021.102139

L. Pattusamy, M. Rajendran, S. Senthilkumar, R. Krishnasamy (2023) Confinement effectiveness of 2900psi concrete using the extract of Euphorbia tortilis cactus as a natural additive. Matéria (Rio de Janeiro), 28(1).

https://doi.org/10.1590/1517-7076-RMAT-2022-0233

P. Loganathan, R. Mohanraj, S. Senthilkumar, K. Yuvaraj (2022) Mechanical performance of ETC RC beam with U-framed AFRP laminates under a static load condition. Revista de la Construcción. Journal of Construction, 21(3), 678- 691.

https://doi.org/10.7764/RDLC.21.3.678

K. M. Gopalakrishnan, R. Mohanraj, P. Swaminathan, R. Saravanan (2024) Enhancing concrete beam performance with PVAfibers, coal ash, and graphene fabric: a comprehensive structural analysis. International Journal of Coal Preparation and Utilization, 45(2), 405–421.

https://doi.org/10.1080/19392699.2024.2407604

R. Krishnasamy, S. C. Johnson, P. S. Kumar, R. Mohanraj (2024) Experimental Investigation of Lateral Load Test on Diagonal Braced 3M Glass Fiber Reinforced Polymer Transmission Tower. Power Research - A Journal of CPRI, 19(2), 225–231. https://doi.org/10.33686/pwj.v19i2.1150

K. Yuvaraj, M. Sakthivel, M. D .Karthick, T. Pradeep, M. Veerapathran, S. Gowtham (2024) Mechanical performance of mono and hybrid synthetic fibers engineered cementitious composites with silica fume. Journal of Ceramic Processing Research, 25(2), 254-260.

Y. Kandasamy, M. E. Krishnasamy, K. Moongilpatti Krishnasamy, K. S. Navaneethan (2024) Investiga¬ting the influence of various metakaolin combinations with different proportions of pond ash and Alccofine 1203 on ternary blended geopolymer concrete at ambient curing. Environmental Science and Pollution Research, 1-12.

https://doi.org/10.1007/s11356-024-35397-x

R. Mohanraj, P. Prasanthni, S. Senthilkumar, C. J. Blessy Grant (2024). Comparative analysis of armid fiber reinforced polymer for strengthening reinforced concrete beam‐column joints under cyclic loading. Materialwissenschaft und Werkstofftechnik, 55(12), 1743-1750.

https://doi.org/10.1002/mawe.202300351

D. Velumani, P. Mageshkumar, K. Yuvaraj (2024) Properties of Binary and Ternary Blended Cement Containing Pond Ash and Ground Granulated Blast Furnace Slag. Polish Journal of Environmental Studies, 33(1), 443-454.

https://doi.org/10.15244/pjoes/170852

##submission.downloads##

Objavljeno

2025-04-23

Broj časopisa

Rubrika

Articles