Synthesis of copper (II) oxide nanoparticle: A promising material for photocatalysis

Authors

DOI:

https://doi.org/10.62638/ZasMat1227

Abstract

Copper oxide (CuO) nanoparticles have gained significant attention due to their unique properties and wide range of applications. Various methods have been developed to synthesize CuO nanoparticles (NP), including physical, chemical, and biological methods. These nanoparticles find applications in various fields, including electronics, energy storage, photocatalysis, medical, and materials science. This paper reports a facile and quick synthesis of CuOnanoparticles for the first time using curcumin as a stabilizing agent and sodium borohydride as a reducing agent. Synthesized nanoparticle is characterized using UV-visible spectrum measurement and X-ray diffraction techniques.Synthesized catalyst was used to study the photocatalytic degradation of the very hazardous organic pollutant para-nitrophenol. (PNP)The study wascarried out in acidic and basic medium under dark and visible light irradiation. In a basic environment, the degradation of PNP remains almost insignificant whether in the presence or absence of light. However, in an acidic environment, degradation of PNP occurs at a slow pace when there is no light, but the process accelerates significantly when exposed to light. Density Functional Theory calculation indicates a strong interaction between curcumin and CuO moiety. It indicates that curcumin stabilizes the CuO nanoparticles and will be quite stable for a long time. Also, it will facilitate the easy transfer of electrons from curcumin to CuO NP by lowering the band gap and enhancing the catalytic property of NP.

Keywords:

Nanoparticles, CuO, photocatalysis, DFT calculation

References

A. M. Al-Fa'ouri, M. H. Abu-Kharma, A. M. Awwad, M. K. Abugazleh (2023) Investigation of optical and structural properties of copper oxide nanoparticles synthesized via green method using Bougainvillea leaves extract," Nano-Structures & Nano-Objects, 36, 101051.

https://doi.org/10.1016/j.nanoso.2023.101051

S. Faisal et al. (2021) Curcuma longa Mediated Synthesis of Copper Oxide, Nickel Oxide and Cu-Ni Bimetallic Hybrid Nanoparticles: Characterization and Evaluation for Antimicrobial, Anti-Parasitic and Cytotoxic Potentials," Coatings, 11, 849.

https://doi.org/10.3390/coatings11070849

S. Aroob et al. (2023) Green Synthesis and Photocatalytic Dye Degradation Activity of CuO Nanoparticles," 13, 502.

https://doi.org/10.3390/catal13030502

S. Naz, A. Gul, M. Zia, R. Javed (2023) Synthesis , biomedical applications , and toxicity of CuO nanoparticles," Appl. Microbiol. Biotechnol., 107, 1039.

https://doi.org/10.1007/s00253-023-12364-z

M. Shukla, S. Pal, I. Sinha (2022) Ionic Liquid Functionalized Cu 2 O nanoparticles, 1262, 132961.

https://doi.org/10.1016/j.molstruc.2022.132961

P. Ramesh, A. Rajendran (2023) Photocatalytic dye degradation activities of green synthesis of cuprous oxide nanoparticles from Sargassum wightii extract, 6, 100208.

https://doi.org/10.1016/j.chphi.2023.100208

J. H N, K. G. Chandrappa, S. Fakrudeen, (2023) Green synthesis of CuO nanoparticles: A promising material for photocatalysis and electrochemical sensor, Sensors Int., 5, 100254.

https://doi.org/10.1016/j.sintl.2023.100254

H. Saha et al., (2024) Photocatalytic performance of CuO NPs: An experimental approach for process parameter optimization for Rh B dye, Results Mater., 24, 100614.

https://doi.org/10.1016/j.rinma.2024.100614

B. Coşkuner Filiz, (2020) The role of catalyst support on activity of copper oxide nanoparticles for reduction of 4-nitrophenol, Adv. Powder Technol., 31, 3845.

https://doi.org/10.1016/j.apt.2020.07.026

M. E. Grigore, E. R. Biscu, A. M. Holban, M. C. Gestal, A. M. Grumezescu, (2016) Methods of Synthesis, Properties and Biomedical Applications of CuO Nanoparticles, Pharmaceuticals, 9, 75.

https://doi.org/10.3390/ph9040075

R. S. Hamida, M. A. Ali, A. Redhwan, M. M. Bin-Meferij (2020) Cyanobacteria - A Promising Platform in Green Nanotechnology: A Review on Nanoparticles Fabrication and Their Prospective Applications., Int. J. Nanomedicine, 15, 6033.

https://doi.org/10.2147/IJN.S256134

R. Ranjan, M. Shukla (2025) Curcumin-mediated synthesis of cuprous oxide nanoparticles and its photocatalytic application," Next Mater., 6, 100481.

https://doi.org/10.1016/j.nxmate.2024.100481

C. Yang, F. Xiao, J. Wang, X. Su (2014) Synthesis and microwave modification of CuO nanoparticles: crystallinity and morphological variations, catalysis, and gas sensing., J.Colloid Interface Sci., 435, 34-42.

https://doi.org/10.1016/j.jcis.2014.08.044

M. Ahamed, R. Lateef, M. J. Akhtar, P. Rajanahalli (2022) Dietary Antioxidant Curcumin Mitigates CuO Nanoparticle-Induced Cytotoxicity through the Oxidative Stress Pathway in Human Placental Cells," Molecules, 27, 7378.

https://doi.org/10.47750/pnr.2022.13.S10.753.

A. Mathew, A. Parveen, K. N. Pathade, A. Dhote, A. K. Nakkella, (2022) Green Synthesis And Pharma-cological Potential Of Curcumin," 13, 6090.

https://doi.org/10.47750/pnr.2022.13.S10.753.

P. C. Okoye, S. O. Azi, T. F. Qahtan, T. O. Owolabi, T. A. Saleh, (2023) Synthesis, properties, and applications of doped and undoped CuO and Cu2O nanomaterials," Mater. Today Chem., 30, 101513.

https://doi.org/10.1016/j.mtchem.2023.101513.

H. T. Berede, et al. (2024) Photocatalytic activity of the biogenic mediated green synthesized CuO nanoparticles confined into MgAl LDH matrix," Sci. Rep., 14, 2314.

https://doi.org/10.1038/s41598-024-52547-w

K. P. Jithul, K. S. Samra, (2022) Cupric Oxide based Supercapacitors: A Review," J. Phys. Conf. Ser., 2267, 012120.

https://doi.org/10.1088/1742-6596/2267/1/012120

M. Devaraji, P. V Thanikachalam, K. Elumalai, (2024) The potential of copper oxide nanoparticles in nanomedicine: A comprehensive review, Biotechnol. Notes, 5, 80.

https://doi.org/10.1016/j.biotno.2024.06.001

M. J. Woźniak-Budych, K. Staszak, M. Staszak, (2023) Copper and Copper-Based Nanoparticles in Medi¬cine-Perspectives and Challenges., Molecules, 28, 6687.

https://doi.org/10.3390/molecules28186687

H. Onyeaka, P. Passaretti, T. Miri, Z. T. Al-Sharify (2022) The safety of nanomaterials in food production and packaging, Curr. Res. Food Sci., 5, 763.

https://doi.org/10.1016/j.crfs.2022.04.005

A. A. Gvozdenko, et al., (2022) Synthesis of CuO nano¬particles stabilized with gelatin for potential use in food packaging applications, Sci. Rep., 12, 12843.

https://doi.org/10.1038/s41598-022-16878-w

A. Bhattacharjee, M. Ahmaruzzaman (2016) CuO nanostructures: facile synthesis and applications for enhanced photodegradation of organic compounds and reduction of p-nitrophenol from aqueous phase, RSC Adv., 6, 41348.

https://doi.org/10.1039/C6RA03624D

I. Hasan, C. Shekhar, I. I. Bin Sharfan, R. A. Khan, A. Alsalme (2020) Ecofriendly Green Synthesis of the ZnO-Doped CuO@Alg Bionanocomposite for Efficient Oxidative Degradation of p-Nitrophenol, ACS Omega, 5, 32011.

https://doi.org/10.1021/acsomega.0c04917

K.Dulta, G.Koşarsoy Ağçeli, P.Chauhan, R. Jasrotia, P.K.Chauhan, J.O.Ighalo (2022) "Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity," Sustain. Environ. Res., 32, 2.

https://doi.org/10.1186/s42834-021-00111-w

Y. Fan, et al. (2022) Effective photodegradation of 4-nitrophenol with CuO nano particles prepared by ionic liquids/water system," Green Chem. Eng., 3, 15.

https://doi.org/10.1016/j.gce.2021.07.009

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox (2016) Gaussian, Inc., Wallingford CT.

A. D. Becke (1993) Density-functional thermochemistry. III. The role of exact exchange," J. Chem. Phys., 98, 5648.

https://doi.org/10.1063/1.464913

Downloads

Published

24-04-2025

Issue

Section

Articles