Response Surface Methodology and Artificial Neural Networks Optimisation of CO2 Methanation Simulation using Ni/MgAl2O4 Catalyst in a Multi-Tubular Fixed-Bed Reactor
DOI:
https://doi.org/10.62638/ZasMat1295Apstrakt
This study investigated the simulation and optimization of synthetic methane production over Ni/MgAl2O4 in a multi-tubular fixed-bed reactor. The study comprises process simulation conducted using Aspen Hysys software, modeling and optimization using response surface methodology (RSM) and artificial neural network (ANN) performed using Design Experts and MATLAB software respectively. In the process simulation for the CO2methanation, sensitivity analyses were performed to determine the effects of temperature, pressure, H2/CO2 ratio, and CO fraction in the feedstock on CO2 conversion,CH4 yield, and CH4 selectivity. RSM and ANN models were built using datapoints provided by the process simulation results to model the relationship between input variables and output responses and perform optimisation for RSM model and ANN model coupled with genetic algorithm (GA). The process simulation results profoundly highlighted theimpact of temperature in enhancing CO2 conversion and CH4 yield. Higher temperatures favoured the endothermic reversed water-gas shift (RWGS) reaction, leading to increased CO2 conversion and CH4 yield. Both CO2 conversion, CH4 selectivity, and yield were found to be minimally affected by pressure. CO fraction in the feed was found to exert a delicate influence on the CO2 conversion and CH4 yield. Excessive CO fractions hindered the methanation process, reducing both CO2 conversion and CH4 yield. Additionally, the H2/CO2 ratio proved critical as higher ratios facilitated higher CO2 conversion, CH4 selectivity, and yield, emphasizing the significance of optimal hydrogen to CO2 ratio for efficient methanation which was proposed to be at values higher than the stoichiometric value of 4:1. Furthermore, the ANN-GA model outperformed RSM in terms of prediction accuracy and optimization. The ANN model demonstrated superior capabilities in capturing the complex relationships between the input variables and output responses demonstrated by the performance metrics including R2 values, MSE, RMSE etc. The optimisation results of the ANN-GA model provided more precise and efficient predictions when compared with RSM, offering a deeper understanding of the intricate interactions within the methanation process.
Ključne reči:
Artificial Neural Networks, CO2 Methanation, HYSYS Modelling, Response Surface Methodology, Reverse Water Gas Shift, Langmuir-Hinshelwood-Hougen-Watson Rate ExpressionReference
N.A.M.Razali, K.T. Lee, S. Bhatia, A.R. Mohamed (2012) Heterogeneous Catalysts for Production of Chemicals Using Carbon Dioxide as Raw Material: A Review. Renewable Sustainable Energy Rev. 16, 4951– 4964. https://doi.org/10.1016/j.rser.2012.04.012.
W.Li, H. Wang, X. Jiang, J. Zhu, Z.Liu, X. Guo, C. Song (2018) A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Adv., 8, 7651–7669. https://doi.org/10.1039/C7RA13546G.
L. Li, W. Zeng, M. Song, X. Wu, G. Li, & C. Hu. (2022). Research progress and reaction mechanism of CO2methanation over Ni-based catalysts at low temperature: A review. Catalysts, 12, 244. https://doi.org/10.3390/catal12020244
M. Younas, M. Sohail, L. K. Leong, M. J. K. Bashir, H. Nadeem, S. Shehzad, & S. Sumathi. (2017). Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2. Energy & Fuels. https://doi.org/10.1021/acs.energyfuels.6b01723
M. Obeid, C. Poupin, M. Labaki, S. Aouad, F. Delattre, S. Gupta, ...& E. Abi-Aad. (2023). CO2methanation over LDH derived NiMgAl and NiMgAlFe oxides: Improving activity at lower temperatures via an ultrasound-assisted preparation. Chemical Engineering Journal, 474, 145460. https://doi.org/10.1016/j.cej.2023.145460
M. Younas, L. K. Kong, M. J. Bashir, H. Nadeem, A. Shehzad, & S. Sethupathi. (2016). Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2. Energy & Fuels, 30(11), 8815–8831. https://doi.org/10.1021/acs.energyfuels.6b01723
J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, H. Xu, & J. Sun. (2017). Directly converting CO2 into a gasoline fuel. Nature Communications, 8(1), 15174. https://doi.org/10.1038/ncomms15174
N. D. MohdRidzuan, M. S. Shaharun, M. A. Anawar, & I. Ud-Din. (2022). Ni-based catalyst for carbon dioxide methanation: A review on performance and progress. Catalysts, 12, 469. https://doi.org/10.3390/catal12050469
S. Biswas, A. P. Kulkarni, S. Giddey, & S. Bhattacharya. (2020). A review on synthesis of methane as a pathway for renewable energy storage with a focus on solid oxide electrolytic cell-based processes. Frontiers in Energy Research, 8, 570112. ttps://doi.org/10.3389/fenrg.2020.570112
L. Barelli, G. Bidini, P. A. Ottaviano, & M. Perla. (2021). Liquefied synthetic natural gas produced through renewable energy surplus: Impact analysis on vehicular transportation by 2040 in Italy. Gases, 1, 80–91. https://doi.org/10.3390/gases1020007
K. Stangeland, D. Kalai, H. Li, & Z. Yu. (2017). CO2methanation: The effect of catalysts and reaction conditions. Energy Procedia, 105, 2022–2027. https://doi.org/10.1016/j.egypro.2017.03.577
A. Mazza, E. Bompard, & G. Chicco. (2018). Applications of power to gas technologies in emerging electrical systems. Renewable and Sustainable Energy Reviews, 92, 794–806. https://doi.org/10.1016/j.rser.2018.04.072
R. Curie. (2019). Design and Simulation of Novel Sabatier Reactors for the Thermocatalytic Conversion of CO2 into Renewable Natural Gas (Master’s thesis). University of Waterloo. http://hdl.handle.net/10012/14542
A. Kolakoti, & G. Satish. (2023). Biodiesel production from low-grade oil using heterogeneous catalyst: an optimisation and ANN modelling. Australian Journal of Mechanical Engineering, 21(1), 316–328. https://doi.org/10.1080/14484846.2020.1842298
C. Bassano, P. Deiana, L. Lietti, & C. G. Visconti. (2019). P2G movable modular plant operation on synthetic methane production from CO2 and hydrogen from renewable sources. Fuel, 253, 1071 –1079.https://doi.org/10.1016/j.fuel.2019.05.074
C. E. Yeo, M. Seo, D. Kim, C. Jeong, H. S. Shin, & S. Kim. (2021). Optimization of operating conditions for CO2methanation process using design of experiments. Energies, 14(24), 8414. https://doi.org/10.3390/en14248414
A. Kolakoti, P. Bobbili, S. Katakam, S. Geeri, & W. G. Soliman. (2023). Applications of artificial intelligence in sustainable energy development and utilization. In Computational Intelligence in Sustainable Reliability Engineering (pp. 129–143). https://doi.org/10.1002/9781119865421.ch6
A. Z. AbHalim, R. Ali, & W. A. Wan Abu Bakar. (2015). CO2/H2methanation over M*/Mn/Fe-Al2O3 (M*: Pd, Rh, and Ru) catalysts in natural gas; optimization by response surface methodology-central composite design. Clean Technologies and Environmental Policy, 17, 627–636. https://doi.org/10.1007/s10098-014-0814-8
N. Ali, M. Bilal, M. S. Nazir, A. Khan, F. Ali, & H. M. Iqbal. (2020). Thermochemical and electrochemical aspects of carbon dioxide methanation: A sustainable approach to generate fuel via waste to energy theme. Science of the Total Environment, 712, 136482. https://doi.org/10.1016/j.scitotenv.2019.136482
M. Younas, S. Sethupathi, L. L. Kong, & A. R. Mohamed. (2018). CO2methanation over Ni and Rh based catalysts: Process optimization at moderate temperature. International Journal of Energy Research, 42(10), 3289–3302. https://doi.org/10.1002/er.4082
Y. Zhang, B. Wang, Z. Ji, Y. Jiao, Y. Shao, H. Chen, & X. Fan. (2023). Plasma-catalytic CO2methanation over NiFen/(Mg, Al) Ox catalysts: Catalyst development and process optimisation. Chemical Engineering Journal, 465, 142855. https://doi.org/10.1016/j.cej.2023.142855
V. Dieterich, A. Buttler, A. Hanel, H. Spliethoff, & S. Fendt. (2020). Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: a review. Energy & Environmental Science, 13(10), 3207–3252. https://doi.org/10.1039/D0EE01187H
J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, & F. Su. (2012). A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, 2(6), 2358–2368. https://doi.org/10.1039/C2RA00632D
M. F. Neubert. (2020). Catalytic methanation for small-and mid-scale SNG production. Friedrich-Alexander-Universität Erlangen-Nürnberg. https://open.fau.de/handle/openfau/13118
A. El Sibai, L. Rihko-Struckmann, & K. Sundmacher. (2015). Synthetic methane from CO2: Dynamic optimization of the Sabatier process for power-to-gas applications. In Computer Aided Chemical Engineering (Vol. 37, pp. 1157–1162). Elsevier. ttps://doi.org/10.1016/B978-0-444-63577-8.50038-3
L. Shen, J. Xu, M. Zhu, & Y. F. Han. (2020). Essential role of the support for nickel-based CO2methanation catalysts. ACS Catalysis, 10(24), 14581–14591. https://doi.org/10.1021/acscatal.0c03471
E. I. Papaioannou, S. Souentie, A. Hammad, & C. G. Vayenas. (2009). Electrochemical promotion of the CO2 hydrogenation reaction using thin Rh, Pt and Cu films in a monolithic reactor at atmospheric pressure. Catalysis Today, 146(3–4), 336–344. https://doi.org/10.1016/j.cattod.2009.06.008
L. Jürgensen, E. A. Ehimen, J. Born, & J. B. Holm-Nielsen. (2015). Dynamic biogas upgrading based on the Sabatier process: Thermodynamic and dynamic process simulation. Bioresource Technology, 178, 323–329. https://doi.org/10.1016/j.biortech.2014.10.069
J. Schumacher, D. Meyer, J. Friedland, & R. Güttel. (2022). Evaluation of the application of different diffusion models for the methanation of CO/CO2 mixtures. Results in Engineering, 13, 100355. https://doi.org/10.1016/j.rineng.2022.100355
A. Streb, & M. Mazzotti. (2022). Performance limits of neural networks for optimizing an adsorption process for hydrogen purification and CO2 capture. Computers & Chemical Engineering, 166, 107974. https://doi.org/10.1016/j.compchemeng.2022.107974
I. Agirre, E. Acha, J. F. Cambra, & V. L. Barrio. (2021). Water sorption enhanced CO2methanation process: Optimization of reaction conditions and study of various sorbents. Chemical Engineering Science, 237, 116546. https://doi.org/10.1016/j.ces.2021.116546
W. L. Becker, M. Penev, & R. J. Braun. (2019). Production of synthetic natural gas from carbon dioxide and renewably generated hydrogen: A techno-economic analysis of a power-to-gas strategy. Journal of Energy Resources Technology, 141(2), 021901. https://doi.org/10.1115/1.4041381
R. A. Hubble, J. Y. Lim, & J. S. Dennis. (2016). Kinetic studies of CO2methanation over a Ni/γ-Al2O3 catalyst. Faraday Discussions, 192, 529–544. https://doi.org/10.1039/C6FD00043F
J. Lefebvre, N. Trudel, S. Bajohr, & T. Kolb. (2018). A study on three-phase CO2methanation reaction kinetics in a continuous stirred-tank slurry reactor. Fuel, 217, 151–159. https://doi.org/10.1016/j.fuel.2017.12.082
D. Katla, D. Węcel, M. Jurczyk, & A. Skorek-Osikowska. (2023). Preliminary experimental study of a methanation reactor for conversion of H2 and CO2 into synthetic natural gas (SNG). Energy, 263, 125881. https://doi.org/10.1016/j.energy.2022.125881
M. Hervy, J. Maistrello, L. Brito, M. Rizand, E. Basset, Y. Kara, & M. Maheut. (2021). Power-to-gas: CO2methanation in a catalytic fluidized bed reactor at demonstration scale, experimental results and simulation. Journal of CO2 Utilization, 50, 101610. https://doi.org/10.1016/j.jcou.2021.101610
M. Held, D. Schollenberger, S. Sauerschell, S. Bajohr, & T. Kolb. (2020). Power-to-Gas: CO2 methanation concepts for SNG production at the Engler-Bunte-Institut. Chemie Ingenieur Technik, 92(5), 595–602. https://doi.org/10.1002/cite.201900181
D. L. Reddy, D. Lokhat, H. Siddiqi, & B. C. Meikap. (2022). Modelling and simulating CO and CO2methanation over Ru/γ-Al2O3 catalyst: An integrated approach from carbon capture to renewable energy generation. Fuel, 314, 123095. https://doi.org/10.1016/j.fuel.2021.123095
T. Chwoła, T. Spietz, L. Więcław-Solny, A. Tatarczuk, A. Krótki, S. Dobras, M. Stec, & J. Zdeb. (2020). Pilot plant initial results for the methanation process using CO2 from amine scrubbing at the Łaziska power plant in Poland. Fuel, 263, 116804. https://doi.org/10.1016/j.fuel.2019.116804
S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, & S. Bajohr. (2016). Review on methanation – From fundamentals to current projects. Fuel, 166, 276–296. https://doi.org/10.1016/j.fuel.2015.10.111
H. Nam, J. H. Kim, H. Kim, M. J. Kim, S. G. Jeon, G. T. Jin, & H. J. Ryu. (2021). CO2methanation in a bench-scale bubbling fluidized bed reactor using Ni-based catalyst and its exothermic heat transfer analysis. Energy, 214, 118895. https://doi.org/10.1016/j.energy.2020.118895
S. I. Ngo, Y. I. Lim, D. Lee, M. W. Seo, & S. Kim. (2021). Experiment and numerical analysis of catalytic CO2methanation in bubbling fluidized bed reactor. Energy Conversion and Management, 233, 113863. https://doi.org/10.1016/j.enconman.2021.113863
W. J. Lee, C. Li, H. Prajitno, J. Yoo, J. Patel, Y. Yang, & S. Lim. (2021). Recent trend in thermal catalytic low temperature CO2methanation: A critical review. Catalysis Today, 368, 2–19. https://doi.org/10.1016/j.cattod.2020.02.017
J. Ye, Y. Yao, Y. Zhao, Q. Yang, L. Ma, W. Zhang, & C. Tang. (2021). A review of CO2methanation: Key factors of catalyst, mechanism, and process. Frontiers in Energy Research, 9, 694805. https://doi.org/10.3389/fenrg.2021.694805
K. Nawaz, M. Sohail, & M. A. Naz. (2021). Recent developments in catalytic CO2methanation: A review. Environmental Science and Pollution Research, 28, 31960–31984. https://doi.org/10.1007/s11356-021-13166-1
M. Z. K. Kamarudin, S. L. Lee, & M. S. M. Nor. (2021). CO2 hydrogenation to methane: Recent advances in catalyst development and reaction mechanisms. Renewable and Sustainable Energy Reviews, 135, 110177. https://doi.org/10.1016/j.rser.2020.110177






