NOVEL STRATEGIES IN CARBON CAPTURE AND UTILIZATION: A   CHEMICAL PERSPECTIVE

Autori

DOI:

https://doi.org/10.62638/ZasMat1262

Apstrakt

The escalating threat of climate change demands innovative approaches to mitigate carbon emissions, and Carbon Capture and Utilization (CCU) has emerged as a promising paradigm. The article begins with an overview of the current carbon emission landscape, underscoring the critical role of CCU in climate change mitigation. Catalysts play a pivotal role in CCU, and the review discusses cutting-edge developments in catalytic materials and design, offering mechanistic insights into catalyzed reactions. Biological strategies, such as bioenergy with carbon capture and storage (BECCS) and microbial carbon capture, are explored alongside genetic engineering for enhanced carbon assimilation. Life cycle assessment and techno-economic analysis are scrutinized to evaluate the environmental and economic aspects of CCU. It concludes with a forward-looking perspective, outlining future prospects and research directions in CCU. This review aims to provide a valuable resource for researchers, policymakers, and industry professionals working towards a sustainable and low-carbon future.

Ključne reči:

sustainable chemistry; electrochemical reduction; industrial carbon utilization; nanotechnology in CCU
Ustanove podrške
No funding

Reference

C. Merchant, “The Anthropocene and the humanities: from climate change to a new age of sustainability,” Environment and History:New Haven and London: Yale University, 27 (3) 499–501 (2021) doi: 10.3197/096734021X16076828553647

Y. Jinyue and Z. Zhang,"Carbon capture, utilization and storage (CCUS)," Applied Energy, 235 1289-1299 (2019) doi: 10.1016/j.apenergy.2018.11.019

S. M. Ashraf, S.A. Jitan, D. Bahamon, L. F. Vega, and G. Palmisano, “Current and future perspectives on catalytic-based integrated carbon capture and utilization,” Science of the Total Environmet, 790 148081(2021) doi: 10.1016/j.scitotenv.2021.148081

G.A. Ozinand J.Y Loh, “Energy Materials Discovery: Enabling a Sustainable Future” Royal Society of Chemistry,118 (2022)doi: 10.1039/9781839163838.

M.S.Alam, T.W. Agung, K. Nakaso, and J. Fukai, "Predictions of O2/N2 and O2/CO2 mixture effects during coal combustion using probability density function,”EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 2 12-16 (2010)doi: ncrs.cm.kyushu-u.ac.jp/ncrs2/index.html.

Y.Zang, P. Wei, H. Li, D. Gao, and G. Wang, “Catalyst design for electrolytic CO2 reduction toward low-carbon fuels and chemicals,” Electrochemical Energy Reviews, 5(1) 29 (2022) doi.org/10.1007/s41918-022-00140-y.

S. Ranjbar and F.X. Malcata, “Is genetic engineering a route to enhance microalgae-mediated bioremediation of heavy metal-containing effluents,” Molecules , 27(5) 1473(2022) doi.org/10.3390/molecules27051473.

M.A. Rahim, M. A. Rahman, M .M. Rahman, A.T. Asyhari, M.Z.A. Bhuiyan, and D. Ramasamy, “Evolution of IoT-enabled connectivity and applications in automotive industry: A review,” Vehicular Communications , 27 100285 (2021)doi.org/10.1016/j.vehcom.2020.100285.

M.Laughlin, Hope, A. A. Littlefield, M. Menefee, A. Kinzer, T. Hull, B. K. Sovacool, M. D. Bazilian, J.Kim, and S. Griffiths, “Carbon capture utilization and storage in review: Sociotechnical implications for acarbon reliant world,” Renewable and Sustainable Energy Reviews ,177 113215 (2023)doi.org/10.1016/j.rser.2023.113215.

A.Srivastav, N. Srivastav, and Nishida, “The science and impact of climate change,” Singapore: Springer, 111-146 (2019) doi.org/10.1007/978-981-13-0809-3.

J. E. Aldy and R. Zeckhauser, “Three prongs for prudent climate policy,” Southern Economic Journal , 87(1) 3-29 (2020) doi.org/10.1002/soej.12433.

J.Santosa, A.H. Kuncoro, A. Dwijatmiko, N. W. Hesty, and A. Darmawan, "The Role of Nuclear Power Plants in Indonesia towards Net Zero Emissions (NZE) in 2060 with a Multi Regions Approach,"EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(3) 1660-1673 (2023) doi.org/10.5109/7151715.

A.Sudradjat, I. Syafri, and M. Burhannudinnur, "The Geyser Type Mud Volcano Eruption in Sidoarjo, East Java, Indonesia," ," EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 8 108-113 (2022) doi.org/10.5109/5909074.

M.N. Anwar, A. Fayyaz, N. F. Sohail, M. F. Khokhar, M. Baqar, A. Yasar, K. Rasool,” CO2 utilization: Turning greenhouse gas into fuels and valuable products” Journal of environmental management 260110059 (2020) doi.org/10.1016/j.jenvman.2019.110059.

A. Alok, R. Shrestha, S.Ban, S.Devkota, B. Uprety, and R. Joshi, “Technological advances in the transformative utilization of CO2 to value-added products,” Journal of Environmental Chemical Engineering, 10(1) 106922 (2022)doi.org/10.1016/j.jece.2021.106922.

M. Kaur, N. Mittal, A. Charak, A.P. Toor, and V. Singh, "Rice Husk derived Activated Carbon for the Adsorption of Scarlet RR an Anionic Disperse Dye,"EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(1) 438-443 (2023) doi.org/10.5109/6782146.

A.E. Creamer and B.Gao, “Carbon dioxide capture: an effective way to combat global warming,” Springer Cham Heidelberg New York Dordrecht London , 62 17-49 (2015)doi: 10.1007/978-3-319-17010-7

J.Sekera and A. Lichtenberger, “Assessing carbon capture: public policy, science, and societal need,” Biophysical Economics and Sustainability, 5 (3) 1-28 (2020)doi.org/10.1007/s41247-020-00080-5.

R.Singh, M.S. Samuel, M. Ravikumar, S. Ethiraj, V. S. Kirankumar, M.Kumar, R. Arulvel and S.Suresh, “A novel approach to environmental pollution management/remediation techniques using derived advanced materials,” Chemosphere , 344 140311 (2023) doi.org/10.1016/j.chemosphere.2023.140311.

S.Zhang, Y. Shen, L. Wang, J. Chen, and Y. Lu, “Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges,” Applied energy, 239 876-897(2019) doi: 10.1016/j.apenergy.2019.01.242

C. A. Trickett, A.Helal, B.A. Al-Maythalony, Z. H. Yamani, K. E. Cordova, and O.M. Yaghi,“The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion,” Nature Reviews Materials , 2(8) 1-16 (2017) doi.org/10.1038/natrevmats.2017.45.

D.D.Zhou, X.W. Zhang, Z.W. Mo, Y.Z. Xu, X.Y. Tian, Y.Li, X.M. Chen, and J.P. Zhang, “Adsorptive separation of carbon dioxide: From conventional porous materials to metal–organic frameworks,” EnergyChem , 13:100016(2019)doi.org/10.1016/j.enchem.2019.10001.

H.Wang, M. Wang, X. Liang, J. Yuan, H. Yang, S.Wang, Y. Ren, H.Wu, F. Pan, and Z. Jiang, “Organic molecular sieve membranes for chemical separations” Chemical Society Reviews , 50 (9) 5468-5516 (2021)doi.org/10.1039/D0CS01347A.

Z.Xu, Z. Fan, C. Shen, Q. Meng, G. Zhang andC.Gao, “Porous composite membrane based on organic substrate for molecular sieving: Current status, opportunities and challenges,” Advanced Membranes , 2 100027 (2022) doi.org/10.1016/j.advmem.2022.100027.

R.E. Siegel, S. Pattanayak, and L. A. Berben, “Reactive capture of CO2: opportunities and challenges,” ACS Catalysis, 13 (1) 766-784 (2022) doi.org/10.1021/acscatal.2c05019.

Z. Liang, K. Fu, R. Idem, and P. Tontiwachwuthikul, “Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents,” Chinese journal of chemical engineering , 24 (2) 278-288 (2016) doi.org/10.1016/j.cjche.2015.06.013.

S.A. Pratiwi, A. Zulys, F. Yulia, and N. Muhadzib, "Preliminary Study of Bio-Metal Organic Frameworks (Bio-MOFs) Based Chromium-Citric Acid for CO_2 Adsorption Application," EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 8 (4) 829-834 (2021)doi.org/10.5109/4742128.

T.D. Moshood, G. Nawanir, F. Mahmud, F. Mohamad, M. H. Ahmad, and A. AbdulGhani, “Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution,” Current Research in Green and Sustainable Chemistry, 5 100273 (2022)doi.org/10.1016/j.crgsc.2022.100273.

J. Wu, T. Sharifi, Y. Gao, T. Zhang, and P. M. Ajayan, “Emerging carbon‐based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value‐added chemicals,” Advanced Materials, 31 (13) 1804257 (2019) doi.org/10.1002/adma.201804257.

Y. Zheng, A.Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, and S.Z. Qiao, “Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts,” Journal of the American Chemical Society, 141 (19) 7646-7659 (2019) doi.org/10.1021/jacs.9b02124.

M.A. Tekalgne, H. H. Do, A. Hasani, Q. Van Le, H. W. Jang, S. H. Ahn, and S. Y. Kim ,“Two-dimensional materials and metal-organic frameworks for the CO2 reduction reaction,” Materials Today Advances, 5 100038(2020) doi.org/10.1016/j.mtadv.2019.100038.

B. Guan, H. Jiang, Y. Wei, Z. Liu, X. Wu, H. Lin, and Z. Huang, “Density functional theory researches for atomic structure, properties prediction, and rational design of selective catalytic reduction catalysts: Current progresses and future perspectives,” Molecular Catalysis , 510 111704 (2021) doi.org/10.1016/j.mcat.2021.111704.

P.A. Julien, C. Mottillo, and T. Friščić, “Metal–organic frameworks meet scalable and sustainable synthesis,” Green Chemistry , 19 (12) 2729-2747 (2017) doi.org/10.1039/C7GC01078H.

R. Lu, X. Zhang, H. Shi, Z. Zhao, M. Li, and X. Zhang, “Wettability Control in Electrocatalytic CO2 Reduction: Effects, Modulations and Mechanisms,” Applied Catalysis B: Environmental, (341) 123293 (2023) doi.org/10.1016/j.apcatb.2023.123293.

L. Che, J. Guo, Z. He, and H. Zhang, “Evidence of rate-determining step variation along reactivity in acetylene hydrogenation: a systematic kinetic study on elementary steps, kinetically relevant (s) and active species,” Journal of Catalysis, 414 336-348 (2022) doi.org/10.1016/j.jcat.2022.08.023.

E.A. Benalcázar, H. Noorman, R. M. Filho, and J. A. Posada, “Decarbonizing ethanol production via gas fermentation: Impact of the CO/H2/CO2 mix source on greenhouse gas emissions and production costs,” Computers & Chemical Engineering , 159 107670 (2022) doi.org/10.1016/j.compchemeng.2022.107670.

W. Ju, A. Bagger, G.P. Hao, A. S. Varela, I. Sinev, V. Bon, B. R. Cuenya, S. Kaskel, J. Rossmeisl, and P. Strasser, “Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2,” Nature communications , 8 (1) 944 (2017)doi.org/10.1038/s41467-017-01035-z.

S. Das, J. P. Ramírez, J. Gong, N. Dewangan, K. Hidajat, B. C. Gates, and S. Kawi, “Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO 2,” Chemical Society Reviews , 49 (10) 2937-3004 (2020) doi: 10.1039/C9CS00713J.

Z. Li, S. Ji, Y. Liu, X. Cao, S. Tian, Y. Chen, Z. Niu, and Y. Li, “Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites,” Chemical reviews , 120 (2) 623-682 (2019) doi.org/10.1021/acs.chemrev.9b00311.

M.A. Sabri, S. A. Jitan, D. Bahamon, L. F. Vega, and G. Palmisano,“Current and future perspectives on catalytic-based integrated carbon capture and utilization,” Science of the Total Environment, 790 148081 (2021) doi.org/10.1016/j.scitotenv.2021.148081.

A.A.Adam, M.A. Shahein, A.E. EL-Kholy, and H.A. Moneib, "Cofiring of Oil and Gaseous Fuels Through an Innovative Coaxial, Double Swirl Burner,"EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy,979-85 (2023) doi.org/10.5109/7157952.

E.B. Daneshvar, J. Wicker, P.L. Show, and A. Bhatnagar, “Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization–A review,” Chemical Engineering Journal , 427 130884 (2022) doi.org/10.1016/j.cej.2021.130884.

F. Taufany, M.J. Pasaribu, B.Y.S. Romaji, Y. Rahmawati1 , A. Altway, Susianto, S. Nurkhamidah, J.G. Anfias, Y. Mursidah, D. Fujanita, S. Yulianti, D. Rahmawati, G. Stellarosari, “The Synthesis of Activated Carbon from Waste Tyre as Fuel Cell Catalyst Support,” EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 9(2) 412-420 (2022) doi.org/10.5109/4794166.

S. García-Freites, C. Gough, and M. Röder,“The greenhouse gas removal potential of bioenergy with carbon capture and storage (BECCS) to support the UK's net-zero emission target,” Biomass and Bioenergy , 151 106164 (2021) doi.org/10.1016/j.biombioe.2021.106164.

G. Li, W. Xiao, T. Yang, and T.Lyu, “Optimization and process effect for microalgae carbon dioxide fixation technology applications based on carbon capture: A comprehensive review,” C — Journal of Carbon Research, 9 (1) 35 (2023) doi.org/10.3390/c9010035.

P.F. Xia, H. Ling, J.L. Foo, and M.W. Chang,“Synthetic biology toolkits for metabolic engineering of cyanobacteria,” Biotechnology journal, 14 (6) 1800496 (2019) doi.org/10.1002/biot.201800496.

C. Shah, S. Raut, H. Kacha, H. Patel, and M. Shah, “Carbon capture using membrane-based materials and its utilization pathways,” Chemical Papers , 75 (9) 4413-4429 (2021) doi.org/10.1007/s11696-021-01674-z.

Y. Zhang, J. Sunarso, S.Liu, and R. Wang, "Current status and development of membranes for CO2/CH4 separation: A review," International Journal of Greenhouse Gas Control, 12 84-107 (2013) doi.org/10.1016/j.ijggc.2012.10.009.

Z. Zhang, Y. Zheng, L. Qian, D. Luo, H. Dou, G. Wen, Aiping Yu, and Z. Chen, “Emerging Trends in Sustainable CO2‐Management Materials,” Advanced Materials, 34(29) 2201547 (2022) doi.org/10.1002/adma.202201547.

Y.L. Zheng, H.C. Liu, and Y.W. Zhang, “Engineering heterostructurednanocatalysts for CO2 transformation reactions: advances and perspectives,” ChemSusChem , 13(23) 6090-6123 (2020)doi.org/10.1002/cssc.202001290.

E.I. Koytsoumpa, C. Bergins, and E. Kakaras, “The CO2 economy: Review of CO2 capture and reuse technologies,” The Journal of Supercritical Fluids , 132 3-16 (2018) doi.org/10.1016/j.supflu.2017.07.029.

M. Costa, R. Maka, F. S. Marra, A. Palombo, and M.V. Prati, “Assessing techno-economic feasibility of cogeneration and power to hydrogen plants: A novel dynamic simulation model,” Energy Reports , 10 1739-1752 (2023) doi.org/10.1016/j.egyr.2023.08.013.

N. Z. Zaini, N. B. Kamaruzaman, and U. Abidin, "Magnetic microbeads trapping using microfluidic and permanent magnet system," EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy,8 (1)156-162 (2021)doi.org/10.5109/4372272 .

H. Sosiati, N.D.M. Yuniar, D. Saputra, and S. Hamdan, “The Influence of Carbon Fiber Content on the Tensile, Flexural, and Thermal Properties of the Sisal/PMMA Composites,” EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 9(1) 32-40 (2022)doi.org/10.5109/4774214.

L.Cremonese, T. Strunge, B. Olfe-Kräutlein, S.Jahilo, T. Langhorst, S. McCord, L. Müller ,“Making Sense of Techno-Economic and Life Cycle Assessment Studies for CO2 Utilization,” Global CO2 Initiative, (2022) doi.org/10.7302/4202.

G. Garcia‐Garcia, M. C. Fernandez, K. Armstrong, S. Woolass, and P. Styring, “Analytical review oflife‐cycle environmental impacts of carbon capture and utilization technologies,” ChemSusChem , 14 (4) 995-1015 (2021) doi.org/10.1002/cssc.202002126.

A.J.K. Newman and P. Styring, “The pursuit of methodological harmonization within the holistic sustainability assessment of CCU projects: A history and critical review,” Frontiers in Sustainability , 3 1057476 (2023) doi.org/10.3389/frsus.2022.1057476.

R. Mahmud, S.M. Moni, K. High, and M. Carbajales-Dale, “Integration of techno-economic analysis and life cycle assessment for sustainable process design–A review,” Journal of Cleaner Production , 317 128247 (2021) doi.org/10.1016/j.jclepro.2021.128247.

A.W. Zimmermann, J. Wunderlich, L. Müller, G. A. Buchner, A. Marxen, S. Michailos, K. Armstrong, “Techno-economic assessment guidelines for CO2 utilization,” Frontiers in Energy Research, (8) 5 (2020) doi.org/10.3389/fenrg.2020.00005.

Q.H. Phung, K. Sasaki, Y. Sugai, K. Maneeintr, and B. Tayfun, "Numerical simulation of CO2 enhanced coal bed methane recovery for a Vietnamese coal seam," EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 2 1-7 (2010) doi: ncrs.cm.kyushu-u.ac.jp/ncrs2/index.html.

P. Tcvetkov, A. Cherepovitsyn, and S. Fedoseev, “The changing role of CO2 in the transition to a circular economy: Review of carbon sequestration projects,” Sustainability , 11 (20) 5834 (2019) doi.org/10.3390/su11205834.

V. Sick, K. Armstrong, G. Cooney, L. Cremonese, A. Eggleston, G. Faber, G. Hackett , "The need for and path to harmonized life cycle assessment and techno‐economic assessment for carbon dioxide capture and utilization," Energy technology , 8 (11) 1901034 (2020) doi.org/10.1002/ente.201901034.

R. Liang, X. Zheng, P. H. Wang, J. Liang, and L. Hu, “Research Progress of Carbon-Neutral Design for Buildings,” Energies, 16 (16) 5929 (2023) doi.org/10.3390/en16165929.

F. Swennenhuis, V. de Gooyert, and H. de Coninck, “Towards a CO2-neutral steel industry: Justice aspects of CO2 capture and storage, biomass-and green hydrogen-based emission reductions,” Energy Research & Social Science, 88 102598 (2022) doi.org/10.1016/j.erss.2022.102598.

H. Mc. Laughlin, A.A. Littlefield, M. Menefee, A. Kinzer, T. Hull, B. K. Sovacool, M. D. Bazilian, J. Kim, and S. Griffiths , “Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world,” Renewable and Sustainable Energy Reviews , 177 113215 (2023) doi.org/10.1016/j.rser.2023.113215.

H. Naims and E. Eppinger, “Transformation strategies connected to carbon capture and utilization: A cross-sectoralconfigurational study,” Journal of cleaner production, 351 131391(2022)doi.org/10.1016/j.jclepro. 2022.131391.

J. Depledge, “The Paris Agreement: A significant landmark on the road to a climatically safe world,” Chinese Journal of Urban and Environmental Studies, 4 (1) 1650011 (2016)doi.org/10.1142/S2345748116500111.

H. Liu and D. Liang, “A review of clean energy innovation and technology transfer in China,” Renewable and Sustainable Energy Reviews, 18 486-498 (2013)doi.org/10.1016/j.rser.2012.10.041.

N. Wang, K. Akimoto, and G. F. Nemet, “What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects,” Energy Policy, 158 112546 (2021) doi.org/10.1016/j.enpol.2021.112546.

J.D. Filippo, J. Karpman, and J. R. DeShazo, “The impacts of policies to reduce CO2 emissions within the concrete supply chain,” Cement and Concrete Composites , 101 67-82 (2019) doi.org/10.1016/j.cemconcomp.2018.08.003.

H.A. Umar, S. A. Sulaiman, M. A. B.A Majid, M. A. Said, A. Gungor, and R. K. Ahmad, "An outlook on tar abatement, carbon capture and its utilization for a clean gasification process,"EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy,8 (4) 717-731 (2021) doi.org/10.5109/4742115.

A.Y. Ku, P. J. Cook, P. Hao, X. Li, J.P. Lemmon, T.Lockwood, N. M. Dowell, S.P. Singh, N. Wei, and W. Xu, “Cross-regional drivers for CCUS deployment,” Clean Energy, 4 (3) 202-232 (2020) doi.org/10.1093/ce/zkaa008.

J.A.E. Nielsen, K. Stavrianakis, and Z. Morrison, “Community acceptance and social impacts of carbon capture, utilization and storage projects: A systematic meta-narrative literature review,” PLoS one , 17(8) (2022) doi.org/10.1371/journal.pone.0272409

D.Jianning, and O. Eljamal, "Hydrogen production of anaerobic digestion: A review,"EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy,9247-252(2023)doi.org/10.5109/7157979.

E.Kawai, A. Ozawa, and B.D. Leibowicz, “Role of carbon capture and utilization (CCU) for decarbonization of industrial sector: A case study of Japan,” Applied Energy, 328 120183 (2022) doi.org/10.1016/j.apenergy.2022.120183.

A.Wahid, R. Mustafida, and A. Husnil, "Exergy analysis of coal-fired power plants in ultra supercritical technology versus integrated gasification combined cycle," EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 7 (1) 32-42. (2020)doi.org/10.5109/2740939.

M.A.Sabri, S.A. Jitan, D. Bahamon, L. F. Vega, and G. Palmisano, “Current and future perspectives on catalytic-based integrated carbon capture and utilization,” Science of the Total Environment , 790 148081 (2021)doi.org/10.1016/j.scitotenv.2021.148081

K. Sankaran, “Turning black to green: Circular economy of industrial carbon emissions,” Energy for Sustainable Development , 74 463-470 (2023) doi.org/10.1016/j.esd.2023.05.003.

A.Nurdiawati and F. Urban, “Towards deep decarbonisation of energy-intensive industries: A review of current status, technologies and policies,” Energies, 14 (9) 2408 (2021) doi.org/10.3390/en14092408.

R. Sharifian, R. M. Wagterveld, I. A. Digdaya, C. Xiang, D. A. Vermaas, “Electrochemical carbon dioxide capture to close the carbon cycle”, Energy Environ. Sci., 781-814. (2021) doi.org/10.1039/DOEE03382K.

##submission.downloads##

Objavljeno

2025-07-11

Broj časopisa

Rubrika

Review Paper