State-of-the-Art Developments in MXenes: A Comprehensive Review

Autori

DOI:

https://doi.org/10.62638/ZasMat1215

Apstrakt

In recent years, two-dimensional (2D) materials have garnered significant attention because of their distinctive properties and potential applications in a wide range of applications. Among these materials, MXenes, a family of transition metal carbides, nitrides, and carbonitrides, have emerged as a prominent class of 2D materials with remarkable structural, electrical, thermal, optical, mechanical, and chemical properties. This review explores recent advancements in the synthesis techniques, properties, and diverse applications of MXenes in energy storage, electromagnetic interference (EMI) shielding, sensors, and environmental applications. Additionally, it provides a bibliometric overview, analyzing 10,957 research papers to assess global scientific trends and future research directions using Web of Science (WOS) data and VOSviewer software. This review aims to provide a comprehensive understanding of the state-of-the-art developments in MXene technology, offering insights into future directions and potential advancements in this rapidly evolving field.

Ključne reči:

2D materials, MXene, synthesis, applications, bibliometric analysis
Ustanove podrške
SEED funding program at UPES (UPES/R&D-SOE/07032022/08 dated 12/05/2022), Department of Science and Technology, India under SERB-SURE Grant (Grant No. SUR/2022/005356 dated 09-05-2023), CRG Grant (Grant No. CRG/2023/007045)

Reference

Y. Gogotsi, B. Anasori (2019) The rise of MXenes. ACS Nano, 13, 8491–8494,

https://doi.org/10.1021/acsnano.9b06394.

K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V. V Khotkevich, S. V Morozov, A.K. Geim (2005) Two-dimensional atomic crystals. PNAS, 102(30), 10451–10453, https://doi.org/10.1073/pnas.050284810.

H. Zhang (2015) Ultrathin two-dimensional nanomaterials. ACS Nano, 9, 9451–9469, https://doi.org/10.1021/acsnano.5b05040.

H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye (2014) Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, 4033–4041,

https://doi.org/10.1021/nn501226z.

R.M. Ronchi, J.T. Arantes, S.F. Santos (2019) Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceram Int, 45, 18167–18188,

https://doi.org/10.1016/j.ceramint.2019.06.114.

R. Riedel, I.-Wei. Chen (2010) The Mn+1AXn phases and their properties.Ceramics science and technology: materials and properties, 2, 1–510, https://doi.org/10.1002/9783527631971.

M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi (2014) 25th anniversary article: MXenes: A new family of two-dimensional materials. Advanced Materials, 26, 992–1005

https://doi.org/10.1002/adma.201304138.

Y. Gogotsi, Q. Huang (2021) MXenes: two-dimensional building blocks for future materials and devices. ACS Nano, 15, 5775–5780,

https://doi.org/10.1021/acsnano.1c03161.

Z. Zhang, X. Duan, D. Jia, Y. Zhou, S. van der Zwaag (2021) On the formation mechanisms and properties of MAX phases: A review. J Eur Ceram Soc, 41, 3851–3878

https://doi.org/10.1016/j.jeurceramsoc.2021.02.002

M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum (2012) Two-dimensional transition metal carbides. ACS Nano, 6, 1322–1331

https://doi.org/10.1021/nn204153h.

Z. Xiao, S. Ruan, L.B. Kong, W. Que, K. Zhou, Y. Liu, T. Zhang (2020) MXenes and MXenes-based composites. Springer international publishing, Cham, 8, 1-404, https://doi.org/10.1007/978-3-030-59373-5.

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC 2. Advanced Materials, 23, 4248–4253

https://doi.org/10.1002/adma.201102306.

Q. Zhang, R. Fan, W. Cheng, P. Ji, J. Sheng, Q. Liao, H. Lai, X. Fu, C. Zhang, H. Li (2022) Synthesis of large-area MXenes with high yields through power-focused delamination utilizing vortex kinetic energy. Advanced Science, 9, 2202748, https://doi.org/10.1002/advs.202202748.

М. Pogorielov, K. Smyrnova, S. Kyrylenko, O. Gogotsi, V. Zahorodna, А. Pogrebnjak (2021) MXenes—a new class of two-dimensional materials: Structure, properties and potential applications. Nanomaterials, 11,3412

https://doi.org/10.3390/nano11123412.

J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin, P.A. Lynch, S. Qin, M. Han, W. Yang, J. Liu, X. Wang, Y. Gogotsi, J.M. Razal (2020) Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Advanced Materials, 32, 2001093

https://doi.org/10.1002/adma.202001093.

A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, A. Sinitskii (2018) Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci Adv, 4,1-7,

https://doi.org/10.1126/sciadv.aat0491

V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas, D. Wang, R.F. Klie, D. V. Talapin (2020) Covalent surface modifications and super-conductivity of two-dimensional metal carbide MXenes. Science, 369, 979–983,

https://doi.org/10.1126/science.aba8311.

J. Liu, H. Bin Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z.Z. Yu (2017) Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Advanced Materials, 29, 1702367

https://doi.org/10.1002/adma.201702367.

S. Nahirniak, A. Ray, B. Saruhan (2023) Challenges and future prospects of the MXene-based materials for energy storage applications. Batteries, 9, 126,

https://doi.org/10.3390/batteries9020126.

O. Salim, K.A. Mahmoud, K.K. Pant, R.K. Joshi (2019) Introduction to MXenes: synthesis and characteristics. Mater Today Chem, 14, 100191, https://doi.org/10.1016/j.mtchem.2019.08.010.

B. Anasori, M.R. Lukatskaya, Y. Gogotsi (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater, 2, 16098,

https://doi.org/10.1038/natrevmats.2016.98.

Y. Wang, Y. Wang (2023) Recent progress in MXene layers materials for supercapacitors: high‐performance electrodes. SmartMat, 4, e1130, https://doi.org/10.1002/smm2.1130.

A. Sohan, P. Banoth, M. Aleksandrova, A. Nirmala Grace, P. Kollu (2021) Review on MXene synthesis, properties, and recent research exploring electrode architecture for supercapacitor applications. Int J Energy Res, 45, 19746–19771, https://doi.org/10.1002/er.7068.

A.S. Etman, J. Halim, J. Rosen (2021) Mo1.33CTz–Ti3C2Tz mixed MXene freestanding films for zinc-ion hybrid supercapacitors. Mater Today Energy, 22, 100878

https://doi.org/10.1016/j.mtener.2021.100878.

M.S. Javed, A. Mateen, S. Ali, X. Zhang, I. Hussain, M. Imran, S.S.A. Shah, W. Han (2022) The emergence of 2D MXenes based Zn-Ion batteries: recent development and prospects. Small, 18, 2201989,

https://doi.org/10.1002/smll.202201989.

J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza, S. Ullah, J. Wu, G. Zheng, Q. Cao, D. Zhang, Q. Zheng, R. Che (2022) Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nanomicro Lett, 14, 80

https://doi.org/10.1007/s40820-022-00823-7.

M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori, C.M. Koo, G. Friedman, Y. Gogotsi (2020) Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano, 14, 5008–5016

https://doi.org/10.1021/acsnano.0c01312.

A. Iqbal, P. Sambyal, C.M. Koo (2020) 2D MXenes for electromagnetic shielding: A review. Adv Funct Mater, 30, 2000883,

https://doi.org/10.1002/adfm.202000883.

S. Geetha, K.K.S. Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi (2009) EMI shielding: methods and materials - A review. J Appl Polym Sci, 112, 2073–2086, https://doi.org/10.1002/app.29812.

J. Huang, Z. Li, Y. Mao, Z. Li (2021) Progress and biomedical applications of MXenes. Nano Select, 2, 1480–1508, https://doi.org/10.1002/nano.202000309

H. Li, R. Fan, B. Zou, J. Yan, Q. Shi, G. Guo (2023) Roles of MXenes in biomedical applications: recent developments and prospects. J Nanobiotech¬nology, 21, 1-39, https://doi.org/10.1186/s12951-023-01809-2.

A. Zamhuri, G.P. Lim, N.L. Ma, K.S. Tee, C.F. Soon (2021) MXene in the lens of biomedical engineering: synthesis, applications and future outlook. Biomed Eng Online, 20, 1-24, https://doi.org/10.1186/s12938-021-00873-9.

R. Alfahel, R.S. Azzam, M.A. Hafiz, A.H. Hawari, R.P. Pandey, K.A. Mahmoud, M.K. Hassan, A.A. Elzatahry (2020) Fabrication of fouling resistant Ti3C2Tx (MXene)/cellulose acetate nanocomposite membrane for forward osmosis application. Journal of Water Process Engineering, 38,101551, https://doi.org/10.1016/j.jwpe.2020.101551.

I. Ihsanullah (2020) Potential of MXenes in water desalination: current status and perspectives. Nanomicro Lett, 12, 1-20,

https://doi.org/10.1007/s40820-020-0411-9.

Y.A.J. Al-Hamadani, B.-M. Jun, M. Yoon, N. Taheri-Qazvini, S.A. Snyder, M. Jang, J. Heo, Y. Yoon (2020) Applications of MXene-based membranes in water purification: A review. Chemosphere, 254, 126821,

https://doi.org/10.1016/j.chemosphere.2020.126821.

S. Jangra, A. Raza, B. Kumar, J. Sharma, S. Das, K. Pandey, Y.K. Mishra, M.S. Goyat (2025) MXene decorated ZnO-tetrapod for efficient degradation of Methyl Orange, Methylene Blue, and Rhodamine B dyes. Materials Science and Engineering: B, 311, 117832,

https://doi.org/10.1016/j.mseb.2024.117832.

R. Giménez, B. Serrano, V. San-Miguel, J.C. Cabanelas (2022) Recent advances in MXene/epo-xy composites: Ttends and prospects. Polymers (Basel), 14(6), 1170,

https://doi.org/10.3390/polym14061170.

K. Khan, A.K. Tareen, M. Iqbal, Z. Ye, Z. Xie, A. Mahmood, N. Mahmood, H. Zhang (2023) Recent progress in emerging novel MXenes based materials and their fascinating sensing applications. Small, 19, 2206147,

https://doi.org/10.1002/smll.202206147.

Z.U.D. Babar, B. Della Ventura, R. Velotta, V. Iannotti (2022) Advances and emerging challenges in MXenes and their nanocomposites for biosensing applications. RSC Adv, 12, 19590–19610, https://doi.org/10.1039/d2ra02985e.

H. Liao, X. Guo, P. Wan, G. Yu (2019) Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv Funct Mater, 29, 1904507, https://doi.org/10.1002/adfm.201904507.

S. Hroncekova, T. Bertok, M. Hires, E. Jane, L. Lorencova, A. Vikartovska, A. Tanvir, P. Kasak, J. Tkac (2020) Ultrasensitive Ti3C2TX MXene/chito¬san nanocomposite-based amperometric biosensor for detection of potential prostate cancer marker in urine samples. Processes, 8(5), 580

https://doi.org/10.3390/PR8050580.

X. Li, Y. Bai, X. Shi, N. Su, G. Nie, R. Zhang, H. Nie, L. Ye (2021) Applications of MXene (Ti3C2T: X) in photocatalysis: A review. Mater Adv, 2, 1570–1594. https://doi.org/10.1039/d0ma00938e.

Y. Sun, X. Meng, Y. Dall’Agnese, C. Dall’Agnese, S. Duan, Y. Gao, G. Chen, X.F. Wang (2019) 2D MXenes as Co-catalysts in photocatalysis: synthetic methods. Nanomicro Lett, 11, 1-22, https://doi.org/10.1007/s40820-019-0309-6.

T. Haneef, K. Rasool, J. Iqbal, R. Nawaz, M. Raza Ul Mustafa, K.A. Mahmoud, T. Sarkar, A. Shahzad (2023) Recent progress in two dimensional Mxenes for photocatalysis: a critical review. 2d Mater, 10,012001,

https://doi.org/10.1088/2053-1583/ac9e66.

C.E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu, S. Uzun, V. Balitskiy, V. Zahorodna, O. Gogotsi, Y. Gogotsi (2020) Scalable synthesis of Ti3C2Tx MXene. Adv Eng Mater, 22, 1901241, https://doi.org/10.1002/adem.201901241.

S.T. Mahmud, M.M. Hasan, S. Bain, S.T. Rahman, M. Rhaman, M.M. Hossain, M. Ordu (2022) Multilayer MXene heterostructures and nanohybrids for multifunctional applications: A review. ACS Mater Lett, 4, 1174–1206, https://doi.org/10.1021/acsmaterialslett.2c00175.

J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith, L.Å. Näslund, S.J. May, L. Hultman, Y. Gogotsi, P. Eklund, M.W. Barsoum (2014) Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 26, 2374–2381, https://doi.org/10.1021/cm500641a.

W. Sun, S.A. Shah, Y. Chen, Z. Tan, H. Gao, T. Habib, M. Radovic, M.J. Green (2017) Electrochemical etching of Ti2AlC to Ti2CT:X (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A Mater, 5, 21663–21668, https://doi.org/10.1039/c7ta05574a.

R.A. Vaia, A. Jawaid, A. Hassan, G. Neher, D. Nepal, R. Pachter, W. Joshua Kennedy, S. Ramakrishnan (2021) Halogen etch of Ti3AlC2 MAX phase for mxene fabrication. ACS Nano, 15, 2771–2777, https://doi.org/10.1021/acsnano.0c08630

M. Li, J. Lu, K. Luo, Y. Li, K. Chang, K. Chen, J. Zhou, J. Rosen, L. Hultman, P. Eklund, P.O.Å. Persson, S. Du, Z. Chai, Z. Huang, Q. Huang (2019) Element replacement approach by reaction with Lewis Acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc, 141, 4730–4737,

https://doi.org/10.1021/jacs.9b00574.

L. Wang, H. Zhang, B. Wang, C. Shen, C. Zhang, Q. Hu, A. Zhou, B. Liu (2016) Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electronic Materials Letters, 12, 702–710, https://doi.org/10.1007/s13391-016-6088-z.

A. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu, L. Mi, L. Song (2017) Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater Des, 114, 161–166,

https://doi.org/10.1016/j.matdes.2016.10.053.

M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 29, 7633–7644,

https://doi.org/10.1021/acs.chemmater.7b02847.

T. Zhang, L. Pan, H. Tang, F. Du, Y. Guo, T. Qiu, J. Yang (2017) Synthesis of two-dimensional Ti3C2TxMXene using HCl+LiF etchant: Enhanced exfoliation and delamination. J Alloys Compd, 695, 818–826,

https://doi.org/10.1016/j.jallcom.2016.10.127.

B. Unnikrishnan, C.W. Wu, A. Sangili, Y.J. Hsu, Y.T. Tseng, J. Shanker Pandey, H.T. Chang, C.C. Huang (2022) Synthesis and in situ sulfidation of molybdenum carbide MXene using fluorine-free etchant for electrocatalytic hydrogen evolution reactions. J Colloid Interface Sci, 628, 849–857, https://doi.org/10.1016/j.jcis.2022.07.176.

F. Liu, A. Zhou, J. Chen, J. Jia, W. Zhou, L. Wang, Q. Hu (2017) Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl Surf Sci, 416, 781–789, https://doi.org/10.1016/j.apsusc.2017.04.239.

K. Huang, Z. Li, J. Lin, G. Han, P. Huang (2018) Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev, 47, 5109–5124,

https://doi.org/10.1039/c7cs00838d.

S.Y. Pang, Y.T. Wong, S. Yuan, Y. Liu, M.K. Tsang, Z. Yang, H. Huang, W.T. Wong, J. Hao (2019) Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J Am Chem Soc, 141, 9610–9616,

https://doi.org/10.1021/jacs.9b02578.

J. Chen, Q. Jin, Y. Li, H. Shao, P. Liu, Y. Liu, P.L. Taberna, Q. Huang, Z. Lin, P. Simon (2023) Molten salt-shielded synthesis (MS3) of MXenes in air.Energy and environmental Materials, 6, 1-6, https://doi.org/10.1002/eem2.12328.

D.C. Geng, X.X. Zhao, Z.X. Chen, W.W. Sun, W. Fu, J.Y. Chen, W. Liu, W. Zhou, K.P. Loh (2017) Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Advanced Materials, 29, 1700072, https://doi.org/10.1002/adma.201700072.

J. Jia, T. Xiong, L. Zhao, F. Wang, H. Liu, R. Hu, J. Zhou, W. Zhou, S. Chen (2017) Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano, 11, 12509–12518,

https://doi.org/10.1021/acsnano.7b06607.

Z. Zhang, F. Zhang, H. Wang, C. Ho Chan, W. Lu, J.Y. Dai (2017) Substrate orientation-induced epitaxial growth of face centered cubic Mo2C superconductive thin film. J Mater Chem C Mater, 5, 10822–10827, https://doi.org/10.1039/c7tc03652c.

J. Li, Y. Luo, M. Cui, Z. Zhao, X. Liu, X. Chen, L. He, F. Sun (2023) Preparation ultrafine WC based on the new tungsten metallurgy system of “no ammonia transformation - no hydrogen reduction.” Int J Refract Metals Hard Mater, 113, 106212, https://doi.org/10.1016/j.ijrmhm.2023.106212.

D. Nakamura, K. Shigetoh, A. Suzumura (2017) Tantalum carbide coating via wet powder process: From slurry design to practical process tests. J Eur Ceram Soc, 37, 1175–1185,

https://doi.org/10.1016/j.jeurceramsoc.2016.10.029

O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, M.W. Barsoum, Y. Gogotsi (2013) Intercalation and delamination of layered carbides and carbonitrides. Nat Commun, 4, 1-7, https://doi.org/10.1038/ncomms2664.

C. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng, W. Lan, A. Pakdel, J. Heier, F. Nüesch (2020) Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy and environmental materials, 3, 29–55, https://doi.org/10.1002/eem2.12058.

A.C. Khot, T.D. Dongale, J.H. Park, A.V. Kesavan, T.G. Kim (2021) Ti3C2-based MXene oxide nanosheets for resistive memory and synaptic learning applications. ACS appl mater Interfaces, 13, 5216–5227,

https://doi.org/10.1021/acsami.0c19028

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC 2. Advanced Materials, 23, 4248–4253, https://doi.org/10.1002/adma.201102306

Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, X. Yu, K.W. Nam, X.Q. Yang, A.I. Kolesnikov, P.R.C. Kent (2014) Role of surface structure on li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc, 136, 6385–6394,

https://doi.org/10.1021/ja501520b.

Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L. Zhuang, P.R.C. Kent (2014) Prediction and characterization of mxene nanosheet anodes for non-lithium-ion batteries. ACS Nano, 8, 9606–9615, https://doi.org/10.1021/nn503921j.

X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi, C. Zhi (2022) MXene chemistry, electrochemistry and energy storage applications. Nat Rev Chem, 6, 389–404

https://doi.org/10.1038/s41570-022-00384-8.

Y. Zhang, J. Wu, L. Jia, D. Jin, B. Jia, X. Hu, D. Moss, Q. Gong (2024) Advanced optical polarizers based on 2D materials. Npj Nanophotonics, 1:28, 1-17, https://doi.org/10.1038/s44310-024-00028-3.

K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi, Z.W. She (2022) Fundamentals of MXene synthesis. Nature Synthesis, 1, 601–614, https://doi.org/10.1038/s44160-022-00104-6.

S. Kumar, N. Kumari, Y. Seo (2024) MXenes: Versatile 2D materials with tailored surface chemistry and diverse applications. Journal of Energy Chemistry, 90, 253–293,

https://doi.org/10.1016/j.jechem.2023.11.031.

S. Palei, G. Murali, C.H. Kim, I. In, S.Y. Lee, S.J. Park (2023) A Review on Interface Engineering of MXenes for Perovskite Solar Cells. Nanomicro Lett, 15, 123,

https://doi.org/10.1007/s40820-023-01083-9.

M.B. Bahari, C.R. Mamat, A.A. Jalil, N.S. Hassan, N.F. Khusnun, M.H. Sawal, N.M. Izzudin, A.H. Hatta, S.H. Zein, V.G. Le (2023) Advances in MXene-based photoanodes for water-splitting. Journal of Electroanalytical Chemistry, 947, 117750,

https://doi.org/10.1016/j.jelechem.2023.117750.

A.A.P.R. Perera, K.A.U. Madhushani, B.T. Punchihewa, A. Kumar, R.K. Gupta (2023) MXene-based nanomaterials for multifunctional applica¬tions. Materials, 16(3), 1138,

https://doi.org/10.3390/ma16031138.

T.A. Oyehan, B.A. Salami, A.A. Abdulrasheed, H.U. Hambali, A. Gbadamosi, E. Valsami-Jones, T.A. Saleh (2023) MXenes: synthesis, properties, and applications for sustainable energy and environment. Appl Mater Today, 35, 101993, https://doi.org/10.1016/j.apmt.2023.101993.

T. Hu, M. Hu, Z. Li, H. Zhang, C. Zhang, J. Wang, X. Wang (2016) Interlayer coupling in two-dimensional titanium carbide MXenes. Physical Chemistry Chemical Physics, 18, 20256–20260, https://doi.org/10.1039/c6cp01699e.

M. Kurtoglu, M. Naguib, Y. Gogotsi, M.W. Barsoum (2012) First principles study of two-dimensional early transition metal carbides. MRS Commun, 2, 133–137, https://doi.org/10.1557/mrc.2012.25.

K. Chaudhuri, M. Alhabeb, Z. Wang, V.M. Shalaev, Y. Gogotsi, A. Boltasseva (2018) Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene). ACS Photonics, 5, 1115–1122,

https://doi.org/10.1021/acsphotonics.7b01439.

S.C. Lee, Y.H. Kim, J.H. Park, D. Susanto, J.Y. Kim, J. Han, S.C. Jun, K.Y. Chung (2024) Mechanical activation of graphite for Na-Ion battery anodes: unexpected reversible reaction on solid electrolyte interphase via X-Ray analysis. Advanced Science, 11(28), 2401022,

https://doi.org/10.1002/advs.202401022.

M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori, G. Wang, Y. Gogotsi (2017) Hollow MXene spheres and 3D macroporous MXene frameworks for Na-Ion storage. Advanced Materials, 29, 1702410,

https://doi.org/10.1002/adma.201702410.

M. Naguib, R.A. Adams, Y. Zhao, D. Zemlyanov, A. Varma, J. Nanda, V.G. Pol (2017) Electrochemical performance of MXenes as K-ion battery anodes. Chemical Communications, 53, 6883–6886, https://doi.org/10.1039/c7cc02026k.

E. Lee, A. Vahidmohammadi, Y.S. Yoon, M. Beidaghi, D.J. Kim (2019) Two-dimensional Vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens, 4, 1603–1611,

https://doi.org/10.1021/acssensors.9b00303.

O. Mashtalir, M.R. Lukatskaya, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi (2015) Amine-assisted delamination of Nb2C MXene for li-ion energy storage devices. Advanced Materials, 27, 3501–3506, https://doi.org/10.1002/adma.201500604.

D. Sun, M. Wang, Z. Li, G. Fan, L.Z. Fan, A. Zhou (2014) Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem Commun, 47, 80–83, https://doi.org/10.1016/j.elecom.2014.07.026.

R. Syamsai, A.N. Grace (2019) Ta4C3 MXene as supercapacitor electrodes. J Alloys Compd, 792, 1230–1238

https://doi.org/10.1016/j.jallcom.2019.04.096.

Q. Dou, H.S. Park (2020) Perspective on high-energy carbon-based supercapacitors. Energy and environmental materials, 3, 286–305,

https://doi.org/10.1002/eem2.12102.

S. Jangra, B. Kumar, J. Sharma, S. Sengupta, S. Das, R.K. Brajpuriya, A. Ohlan, Y.K. Mishra, M.S. Goyat (2024) A review on overcoming challenges and pioneering advances: MXene-based materials for energy storage applications. J Energy Storage, 101, 113810,

https://doi.org/10.1016/j.est.2024.113810.

M.K. Aswathi, A. V Rane, A.R. Ajitha, S. Thomas, M. Jaroszewski (2019) EMI shielding fundamen¬tals. Wiley Semiconductors,1-9,

https://doi.org/10.1002/9781119128625.ch1.

M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj (2013) EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study. Carbon N Y, 60, 146–156,

https://doi.org/10.1016/j.carbon.2013.04.008.

V.K. Sachdev, S.K. Sharma, M. Tomar, V. Gupta, R.P. Tandon (2016) EMI shielding of MWCNT/ABS nanocomposites in contrast to graphite/ABS composites and MWCNT/PS nanocomposites. RSC Adv, 6, 45049–45058,

https://doi.org/10.1039/c6ra04200g.

P. Banerjee, Y. Bhattacharjee, S. Bose (2020) Lightweight epoxy-based composites for EMI shielding applications. J Electron Mater, 49, 1702–1720, https://doi.org/10.1007/s11664-019-07687-5.

X. Yang, J. Luo, H. Ren, Y. Xue, C. Yang, T. Yuan, Z. Yang, Y. Liu, H. Zhang, J. Yu (2023) Simultaneously improving the EMI shielding performances and mechanical properties of CF/PEKK composites via MXene interfacial modification. J Mater Sci Technol, 154, 202–209, https://doi.org/10.1016/j.jmst.2023.01.020.

F. Raziq, A. Hayat, M. Humayun, S.K. Baburao Mane, M.B. Faheem, A. Ali, Y. Zhao, S. Han, C. Cai, W. Li, D.C. Qi, J. Yi, X. Yu, M.B.H. Breese, F. Hassan, F. Ali, A. Mavlonov, K. Dhanabalan, X. Xiang, X. Zu, S. Li, L. Qiao (2020) Photocatalytic solar fuel production and environmental remediation through experimental and DFT based research on CdSe-QDs-coupled P-doped-g-C3N4 composites. Appl Catal B, 270, 118867, https://doi.org/10.1016/j.apcatb.2020.118867.

Z. Li, Y. Wu (2019) 2D early transition metal carbides (MXenes) for catalysis. Small, 15, 1804736, https://doi.org/10.1002/smll.201804736.

P. Kuang, J. Low, B. Cheng, J. Yu, J. Fan (2020) MXene-based photocatalysts. J Mater Sci Technol, 56, 18–44, https://doi.org/10.1016/j.jmst.2020.02.037.

R. Bhardwaj, A. Hazra (2021) MXene-based gas sensors. J Mater Chem C Mater, 9, 15735–15754, https://doi.org/10.1039/D1TC04085E.

H. Riazi, G. Taghizadeh, M. Soroush (2021) MXene-based nanocomposite sensors. ACS Omega, 6, 11103–11112,

https://doi.org/10.1021/acsomega.0c05828.

M. Kamali, D. Jahaninafard, A. Mostafaie, M. Davarazar, A.P.D. Gomes, L.A.C. Tarelho, R. Dewil, T.M. Aminabhavi (2020) Scientometric analysis and scientific trends on biochar application as soil amendment. Chemical Engineering Journal, 395, 125128,

https://doi.org/10.1016/j.cej.2020.125128.

P. Saravanan, S. Rajeswari, J.A. Kumar, M. Rajasimman, N. Rajamohan (2022) Bibliometric analysis and recent trends on MXene research – A comprehensive review. Chemosphere, 286, 131873

https://doi.org/10.1016/j.chemosphere.2021.131873

R. Zakaria, A. Ahmi, A.H. Ahmad, Z. Othman (2021) Worldwide melatonin research: a bibliometric analysis of the published literature between 2015 and 2019. Chronobiol Int, 38, 27–37, https://doi.org/10.1080/07420528.2020.1838534.

F.P. Appio, F. Cesaroni, A. Di Minin (2014) Visualizing the structure and bridges of the intellectual property management and strategy literature: a document co-citation analysis. Scientometrics, 101, 623–661,

https://doi.org/10.1007/s11192-014-1329-0.

M. Downes, R.W. Lord, M. Anayee (2023) M5X4-A family of MXenes venture capital view project senior design project for hemolife View project. ACS Nano, 17, 17158–17168,

https://doi.org/10.26434/chemrxiv-2023-v6m0k.

X. Zhang, J. Xu, H. Wang, J. Zhang, H. Yan, B. Pan, J. Zhou, Y. Xie (2013) Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si0.75Al 0.25C2. Angewandte Chemie – Inter¬national Edition, 52, 4361–4365,

https://doi.org/10.1002/anie.201300285.

L. Chen, X. Shi, N. Yu, X. Zhang, X. Du, J. Lin (2018) Measurement and analysis of thermal conductivity of Ti3C2Tx MXene films. Materials, 11(9), 1701, https://doi.org/10.3390/ma11091701.

H. Liu, N. Li, Y. Jiang, Q. Wang, Z. Peng (2019) Plasma treated MXene/Ag-based humidity sensor with ultrahigh sensitivity for gesture tracking. in: IOP Conf Ser Mater Sci Eng, Institute of Physics Publishing, 563, 022046,

https://doi.org/10.1088/1757-899X/563/2/022046.

L. Omana, A. Chandran, R.E. John, R. Wilson, K.C. George, N.V. Unnikrishnan, S.S. Varghese, G. George, S.M. Simon, I. Paul (2022) Recent advances in polymer nanocomposites for electromagnetic interference shielding: A review. ACS Omega, 7, 25921–25947,

https://doi.org/10.1021/acsomega.2c02504.

R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao, X. Feng (2018) Ultrathin biomimetic polymeric Ti 3 C 2 T x MXene composite films for electromagnetic interference shielding. ACS Appl Mater Interfaces, 10, 44787–44795,

https://doi.org/10.1021/acsami.8b18347.

A. Vahidmohammadi, A. Hadjikhani, S. Shahbazmohamadi, M. Beidaghi (2017) Two-dimensional Vanadium carbide (MXene) as a high-capacity cathode material for rechargeable Aluminum batteries. ACS Nano, 11, 11135–11144, https://doi.org/10.1021/acsnano.7b05350.

A. Gentile, C. Ferrara, S. Tosoni, M. Balordi, S. Marchionna, F. Cernuschi, M.H. Kim, H.W. Lee, R. Ruffo (2020) Enhanced functional properties of Ti3C2Tx MXenes as negative electrodes in Sodium-ion batteries by chemical tuning. Small Methods, 4(9), 2000314,

https://doi.org/10.1002/smtd.202000314.

F. Liu, J. Zhou, S. Wang, B. Wang, C. Shen, L. Wang, Q. Hu, Q. Huang, A. Zhou (2017) Preparation of high-purity V2C MXene and electrochemical properties as Li-Ion batteries. J Electrochem Soc, 164, A709–A713,

https://doi.org/10.1149/2.0641704jes.

H. He, Q. Xia, B. Wang, L. Wang, Q. Hu, A. Zhou (2020) Two-dimensional vanadium carbide (V2CTx) MXene as supercapacitor electrode in seawater electrolyte. Chinese Chemical Letters, 31, 984–987,

https://doi.org/10.1016/j.cclet.2019.08.025.

Z. Fan, Y. Wang, Z. Xie, X. Xu, Y. Yuan, Z. Cheng, Y. Liu (2018) A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale, 10, 9642–9652,

https://doi.org/10.1039/c8nr01550c.

R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef (2015) Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chemistry of Materials, 27, 5314–5323,

https://doi.org/10.1021/acs.chemmater.5b01623.

L. Yang, W. Zheng, P. Zhang, J. Chen, W.B. Tian, Y.M. Zhang, Z.M. Sun (2018) MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes.Journal of Electroana-lytical Chemistry, 830–831, 1–6,

https://doi.org/10.1016/j.jelechem.2018.10.024.

F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353, 1137–1140,

https://doi.org/10.1126/science.aag2421.

A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.-K. Kim, J. Kwon, J. Hong, H. Kim, D. Kim, Y. Gogotsi, C. Min Koo (2020) Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science, 369, 446–450, https://doi.org/10.1126/science.aba7977.

T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee, M.K. Kim, S.J. Kim, D. Kim, Y. Gogotsi, S.O. Kim, C.M. Koo (2020) Electromagnetic shielding of monolayer MXene assemblies. Advanced Materials, 32(9), 1906769, https://doi.org/10.1002/adma.201906769.

M. Han, X. Yin, H. Wu, Z. Hou, C. Song, X. Li, L. Zhang, L. Cheng (2016) Ti3C2 MXenes with modified surface for high-performance electro-magnetic absorption and shielding in the X-Band. ACS Appl Mater Interfaces, 8, 21011–21019, https://doi.org/10.1021/acsami.6b06455.

R. Sun, H. bin Zhang, J. Liu, X. Xie, R. Yang, Y. Li, S. Hong, Z.Z. Yu (2017) Highly conductive transition metal carbide/carbonitride (MXene)@po¬lystyrene nanocomposites fabricated by electro¬static assembly for highly efficient electromagnetic interferenceshielding. Adv Funct Mater, 27(45), 1702807, https://doi.org/10.1002/adfm.201702807.

L. Liang, R. Yang, G. Han, Y. Feng, B. Zhao, R. Zhang, Y. Wang, C. Liu (2020) Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene. ACS Appl Mater Interfaces, 12, 2644–2654, https://doi.org/10.1021/acsami.9b18504.

P. Song, H. Qiu, L. Wang, X. Liu, Y. Zhang, J. Zhang, J. Kong, J. Gu (2020) Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustainable Materials and Techno¬logies, 24, e00153,

https://doi.org/10.1016/j.susmat.2020.e00153.

W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang, M.G. Ma, F. Chen (2018) Binary strengthening and toughening of MXene/Cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano, 12, 4583–4593, https://doi.org/10.1021/acsnano.8b00997.

W. Cao, C. Ma, S. Tan, M. Ma, P. Wan, F. Chen (2019) Ultrathin and flexible CNTs/MXene/ Cellulose nanofibrils composite paper for electro¬magnetic interference shielding. Nanomicro Lett, 11 (72), 1-17, https://doi.org/10.1007/s40820-019-0304-y.

C. Weng, T. Xing, H. Jin, G. Wang, Z. Dai, Y. Pei, L. Liu, Z. Zhang (2020) Mechanically robust ANF/MXene composite films with tunable electro-magnetic interference shielding performance. Compos Part A Appl Sci Manuf, 135, 105927, https://doi.org/10.1016/j.compositesa.2020.105927.

##submission.downloads##

Objavljeno

2025-04-29

Broj časopisa

Rubrika

Review Paper