Corrosion Inhibition Performance of 5-(3-hydroxyphenyl)-3-carboxyisoxazole for Mild Steel in Acidic Media: Experimental and Theoretical Insights

Authors

  • Ayad Abbood Abdulhasan Department of Metallurgy Engineering, Al-Mustafa University, Baghdad, Iraq Author https://orcid.org/0009-0008-3272-5109
  • Ali J. Naisan Ministry of Oil State Company for gas filling and services, Baghdad, Iraq Author
  • Kareem Mohsen Raheef Ashur university college, Baghdad, Iraq Author
  • Wael H. Alsadi Department of Chemistry, Faculity of Science, Taibah University, Al-Madinah Al-Munawarah, Medina, Saudi Arabia Author
  • F. F. Sayyid Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq Author https://orcid.org/0000-0002-6817-335X
  • A. M. Mustafa Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq Author https://orcid.org/0000-0002-5226-0926
  • A. Al-Amiery Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, AUIQ, An Nasiriyah, Thi Qar, Iraq Author https://orcid.org/0000-0003-1033-4904
  • A. H. Kadhum Faculty of Medicine, University of Al-Ameed, Karbala, Iraq Author https://orcid.org/0000-0003-4074-9123

DOI:

https://doi.org/10.62638/ZasMat1518

Abstract

The present study investigates the corrosion inhibition efficiency of 5-(3-hydroxyphenyl)-3-carboxyisoxazole (HPCI) for mild steel in 1.0 M hydrochloric acid solution using weight loss and electrochemical techniques. The weight loss method was employed to assess the effect of varying inhibitor concentrations (0.0–0.5 mM) at 303 K over different immersion times (1–48 hours). The influence of temperature (303–333 K) on the inhibition performance was also evaluated at these concentrations for a fixed 5-hour immersion period. The results indicate that inhibition efficiency increases with inhibitor concentration, achieving a maximum of 88.2% at 0.5 mM. Interestingly, a slight increase in efficiency with temperature was observed, suggesting physical adsorption as a predominant mechanism. Potentiodynamic polarization studies at 303 K for 5 hours immersion corroborated the weight loss findings and confirmed a mixed-type inhibition mechanism. Adsorption behavior of the inhibitor was found to obey the Langmuir adsorption isotherm model, supporting a monolayer adsorption on the metal surface. Density Functional Theory (DFT) calculations provided electronic descriptors such as the energy gap (ΔEgap) and the highest occupied molecular orbital energy (EHOMO), which confirmed the high electron-donating ability and strong adsorption potential of HPCI. The synergistic use of experimental and theoretical methods demonstrates the potential of 5-(3-hydroxyphenyl)-3-carboxyisoxazole as an efficient and environmentally friendly corrosion inhibitor for mild steel in acidic environments.

Keywords:

weight Loss method, potentiodynamic polarization, carboxyisoxazole, mild steel, corrosion inhibitor
Supporting Agencies
AUIQ-RFP2024-CI

References

M. Errili, K. Tassaoui, A. Chraka, M. Damej, H. Rahal, N. Labjar, A. El Mahmoudi, K. Bougrin, A. Berisha,M. Benmessaoud (2024) Synthesis and investigation of novel sulfonamide–1,2,3–triazoles corrosion inhibitors for E24 steel in 1 M HCl solution: a combination of modeling and experimental approaches, Int. J. Corros. Scale Inhib., 13(3), 1607–1635. https://doi.org/10.17675/2305-6894-2024-13-3-14

M.Y. El Sayed, A.M. Abdel-Gaber, H.T. Rahal(2019) Safranin – a potential corrosion inhibitor for mild steel in acidic media: a combined experimental and theoretical approach, J. Failure Anal. Prev., 19, 1174–1180. https://doi.org/10.1007/s11668-019- 00719-6

H.T. Rahal, A.M. Abdel-Gaber, G.O. Younes (2016) Inhibition of steel corrosion in nitric acid by sulfur containing compounds, Chem. Eng. Commun., 203(4), 435–445. https://doi.org/10.1080/00986445.2015.1017636

H.T. Rahal, A.M. Abdel–Gaber, R. Awad (2016) Corrosion behavior of a superconductor with different SnO2 nanoparticles in simulated seawater solution, Chem. Eng. Commun., 204( 3), 348–355. https://doi.org/10.1080/00986445.2016.1271794

E.B. Caldona, M. Zhang, G. Liang, T.K. Hollis, C.E. Webster, D.W. Smith Jr and D.O. Wipf (2021) Corrosion inhibition of mild steel in acidic medium by simple azole-based aromatic compounds, J. Electroanal. Chem., 880, 114858. https://doi.org/10.1016/j.jelechem.2020.114858

N. Benzbiria, A. Thoume, S. Echihi, M.E. Belghiti, A. Elmakssoudi, A. Zarrouk, M. Azzi and M. Zertoubi (2023) Coupling of experimental and theoretical studies to apprehend the action of benzodiazepine derivative as a corrosion inhibitor of carbon steel in 1 M HCl, J. Mol. Struct., 1281, 13513. https://doi.org/10.1016/j.molstruc.2023.135139

R.D. Salim, N. Betti, M. Hanoon, A.A. Al-Amiery (2021) 2-(2,4-Dimethoxybenzylidene)-N-phenylhy-drazinecarbothioamide as an efficient corrosion inhibitor for mild steel in acidic environment. Prog Color Colorant Coat, 15(1), 45–52. https://doi.org/10.30509/pccc.2021.166775.1105

E.S. Sherif (2011) Corrosion and corrosion inhibition of aluminum in Arabian Gulf seawater and sodium chloride solutions by 3-amino-5-mercapto-1,2,4-triazole, Int. J. Electrochem. Sci., 6(5), 1479–1492. https://doi.org/10.1016/S1452-3981(23)15087-5

F.F. Sayyid, A.M. Mustafa, M.M. Hanoon, L.M. Saker, A.A. Alamiery (2022) Corrosion protection effectiveness and adsorption performance of schiff base-quinazoline on mild steel in HCl environment. CorrosSci Tech, 21(4), 77–88.

A. Altalhi (2023) Anticorrosion investigation of new diazene-based Schiff base derivatives as safe corrosion inhibitors for API X65 steel pipelines in acidic oilfield formation water: synthesis, expe-rimental, and computational studies, ACS Omega, 8(34), 31271–31280. https://doi.org/10.1021/acsomega.3c03592

A. Alobaidy, A. Kadhum, S. Al-Baghdadi, A. Al-Amiery, A. Kadhum, E. Yousif, A.B. Mohamad (2015) Eco-friendly corrosioninhibitor: experimental studies on the corrosion inhibition performance of creatinine for mild steel in HCl complemented with quantum chemical calculations. Int. J. Electrochem. Sci., 10(3), 3961–3972.

M. Ouakki, M. Galai and M. Cherkaoui (2022) Imidazole derivatives as efficient and potential class of corrosion inhibitors for metals and alloys in aqueous electrolytes: A review, J. Mol. Liq., 345, 117815. https://doi.org/10.1016/j.molliq.2021.117815

X. Sun, Y. Qiang, B. Hou, H. Zhu and H. Tian (2022) Cabbage extract as an eco-friendly corrosion inhibitor for X70 steel in hydrochloric acid medium, J. Mol. Liq., 362, 119733. https://doi.org/10.1016/j.molliq.2022.119733

M. Ghaderi, A.R. Saadatabadi, M. Mahdavian and S.A. Haddadi (2022) pH-Sensitive polydopamine-La (III) complex decorated on carbon nanofiber toward on-demand release functioning of epoxy anti-corrosion coating, Langmuir, 38, 11707–11723. https://doi.org/10.1021/acs.langmuir.2c01801

B.S. Mahdi, M.K. Abbass, M.K. Mohsin, W.K. Al–Azzawi, M.M. Hanoon, M.H.H. AlKaabi, L.M. Shaker, A.A. Al-Amiery, W.N.R.W. Isahak, A.A.H. Kadhum and M.S. Takriff (2022) Corrosion inhibition of mild steel in hydrochloric acid environment using terephthaldehyde based on Schiff base: Gravimetric, thermodynamic, and computational studies, Molecules, 27(15), 4857. https://doi.org/10.3390/molecules27154857

A.J.M. Eltmimi, A. Alamiery, A.J. Allami, R.M. Yusop, A.H. Kadhum and T. Allam (2021) Inhibitive effects of a novel efficient Schiff base on mild steel in hydrochloric acid environment, Int. J. Corros. Scale Inhib., 10(2), 634–648. https://doi.org/10.17675/2305- 6894-2021-10-2-10

A. Alamiery, W.N.R.W. Isahak, H. Aljibori, H. Al-Asadi and A. Kadhum (2021) Effect of the structure, immersion time and temperature on the corrosion inhibition of 4-pyrrol-1-ylN-(2,5-dimethyl-pyrrol-1-yl)benzoylamine in 1.0 M HCl solution, Int. J. Corros. Scale Inhib., 10( 2), 700–713. https://doi.org/10.17675/2305-6894-2021-10-2-14

A.M. Resen, M.M. Hanoon, W.K. Alani, A. Kadhim, A.A. Mohammed, T.S. Gaaz, A.A.H. Kadhum, A.A. Al-Amiery and M.S. Takriff (2021) Exploration of 8-piperazine-1- ylmethylumbelliferone for application as a corrosion inhibitor for mild steel in hydrochloric acid solution, Int. J. Corros. Scale Inhib., 10(1), 368–387. https://doi.org/10.17675/2305-6894-2021-10-1-21

M.E. Ansar, K. Tassaoui, A. Chraka, R. Hsissou, M. Damej, H.T. Rahal, S. El Hajjaji and M. Benmessaoud (2024) Electrochemical, thermo-dynamic, and theoretical study of the corrosion inhibition properties of triglycidyloxy tripropylamine triazine on E24 steel in 1 M HCl, Int. J. Corros. Scale Inhib., 13( 4), 2607–2637. https://doi.org/10.17675/2305- 6894-2024-13-4-38

F.F. Sayyid, S.I. Ibrahim, M.M. Hanoon, A.A.H. Kadhum and A.A. Al-amiery (2023) Gravimetric Measurements and Theoretical Calculations of 4-Aminoantipyrine Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution: Comparative Studies, Corros. Sci. Technol., 22(2), 73–89. https://doi.org/10.14773/CST.2023.22.2.73

M.H. Sliem, N.M. El Basiony, E.G. Zaki, M.A. Sharaf, A.M. Abdullah (2020) Corrosion Inhibition of Mild Steel in Sulfuric Acidby a Newly Synthesized Schiff Base: An Electrochemical, DFT, and Monte Carlo Simulation Study. Electroanalysis, 32, 3145–3158, https://doi.org/10.1002/elan.202060461.

I. Obot, N. Obi-Egbedi, S. Umoren (2009) Antifungal drugs as corrosion inhibitors for aluminium in 0.1 M HCl. Corros. Sci, 51, 1868–1875, https://doi.org/10.1016/j.corsci.2009.05.017.

M. Quraishi, F. Ansari, D. Jamal (2003) Thiourea derivatives as corrosion inhibitors for mild steel in formic acid. Mater. Chem. Phys, 77, 687–690, https://doi.org/10.1016/S0254-0584(02)00130-X.

J. Fu, H. Zang, Y. Wang, S. Li, T. Chen, X. Liu (2012) Experimental and theoretical study on the inhibition performances of quinoxaline and its derivatives for the corrosion of mild steel in hydrochloric acid. Ind. Eng. Chem. Res, 51, 6377–6386, https://doi.org/10.1021/ie202832e.

D.M. Jamil, A. Al-Okbi, M. Hanon, K.S. Rida, A. Alkaim, A. Al-Amiery, A. Kadhum, A.A.H. Kadhum (2018) Carbethoxythiazole corrosion inhibitor: as an experimentally model and DFT theory. J. Eng. Appl. Sci., 13(11), 3952–3959. https://doi.org/10.3923/jeasci.2018.3952.3959

N.S. Abdelshafi, A.A. Farag, F.E.T. Heakal, A.S. Badran, K.M. Abdel-Azim, A.R. Manar El Sayed and M.A. Ibrahim (2024) In-depth experimental assessment of two new aminocoumarin derivatives as corrosion inhibitors for carbon steel in HCl media combined with AFM, SEM/EDX, contact angle, and DFT/MDS simulations, J. Mol. Struct., 1304, 137638. https://doi.org/10.1016/j.molstruc.2024.137638

ASTM International, Standard Practice for Prepar-ing, Cleaning, and Evaluating Corrosion Test, 2011, 1–9.

NACE International, Laboratory CorrosionTesting of Metals in Static Chemical Cleaning Solutions at Temperatures below 93°C (200°F), TM0193-2016-SG, 2000.

S.K. Saha, P. Ghosh, A. Hens, N.C. Murmu, P. Banerjee (2015) Density functional theory and molecular dynamics simulation study on corrosion inhibition performance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor. PhysicaE, 66, 332–341, https://doi.org/10.1016/j.physe.2014.10.035.

A.S. Fouda, M.A. Ismail, A.M. Temraz, A.S. Abousalem (2019) Comprehensive investigations on the action of cationic terthiophene and bithiophene as corrosion inhibitors: experimental and theoretical studies. New J. Chem, 43, 768–789, https://doi.org/10.1039/C8NJ04330B.

A.M. Mustafa, F.F. Sayyid, N. Betti, M.M. Hanoon, A. Al-Amiery, A.A.H. Kadhum, M.S. Takriff (2021) Inhibition evaluation of 5-(4-(1H-pyrrol-1-yl)phenyl)-2-mercapto-1,3,4-oxadiazole for the corrosion of mild steel in an acid environment: thermodynamic and DFT aspects. Tribologia, 38(4), 39-47. https://doi.org/10.30678/FJT.105330

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, N. Petersson, H. Nakatsuji, H. Hada, M. Ehara, R. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, J.W. Ayala, P.Y. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, R.L. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople (2004) Gaussian 03, Revision B. 05, Gaussian, Inc., Wallingford, CT.

T. Koopmans (1934) Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica, 1(4), 104–113 (In German).

P.T. Scaria, P. Shetty, P. Preethi and S. Kagatikar (2022) 2-Aminobenzothiazole as an efficient corrosion inhibitor of AA6061-T6 in 0.5 M HCl medium: electrochemical, surface morphological, and theoretical study, J. Appl. Electrochem., 52( 11), 1–15. https://doi.org/10.1007/s10800-022-01742-6

R. Yıldız (2015) An electrochemical and theoretical evaluation of 4,6-diamino-2- pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions, Corros. Sci., 90, 544–553. https://doi.org/10.1016/j.corsci.2014.10.047

X. Li, S. Deng and X. Xie (2014) Experimental and theoretical study on corrosion inhibition of oxime compounds for aluminium in HCl solution, Corros. Sci., 81, 162–175. https://doi.org/10.1016/j.corsci.2013.12.021

O.J. Redlich and D.L. Peterson (1959) A Useful Adsorption Isotherm, J. Phys. Chem., 63(6) 1024. doi: 10.1021/j150576a611

K.Y. Foo and B.H. Hameed (2010) Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156(1) 2–10. https://doi.org/10.1016/j.cej.2009.09.013

S. Martinez (2003) Inhibitory Mechanism of Mimosa Tannin Using Molecular Modeling and Substitutional Adsorption Isotherms, Mater. Chem. Phys., 77, 97–102. https://doi.org/10.1016/S0254-0584(01)00569-7

M. Kilo, H.T. Rahal, M.H. El-Dakdouki and A.M. Abdel-Gaber (2021) Study of the corrosion and inhibition mechanism for carbon steel and zinc alloys by an eco-friendly inhibitor in acidic solution, Chem. Eng. Commun., 208(12) 1676–1685. https://doi.org/10.1080/00986445.2020.1811239

E. Oguzie, Y. Li, S. Wang and F. Wang (2011) Understanding corrosion inhibition mechanisms – Experimental and theoretical approach, RSC Adv., 1( 5), 866– 873. https://doi.org/10.1039/C1RA00148E

L. Guo, W. Dong and S. Zhang (2014) Theoretical challenges in understanding the inhibition mechanism of copper corrosion in acid media in the presence of three triazole derivatives, RSC Adv., 4, 41956–41967. https://doi.org/10.1039/C4RA04931D

L. Guo, C. Qi, X. Zheng, R. Zhang, X. Shen and S. Kaya (2017) Toward understanding the adsorption mechanism of large size organic corrosion inhibitors on an Fe(110) surface using the DFTB method, RSC Adv., 7, 29042–29050. https://doi.org/10.1039/C7RA04120A

A. Kahyarian, A. Schumaker, B. Brown and S. Nesic (2017) Acidic corrosion of mild steel in the presence of acetic acid: Mechanism and prediction, Electrochim. Acta, 258, 639–652. https://doi.org/10.1016/j.electacta.2017.11.109

Downloads

Published

03-11-2025

Issue

Section

Articles