Advancements and challenges in self-healing coatings for sustainable smart materials in industry applications

Authors

  • Sivakumar DUDurairajRAIRAJ Department of Agricultural Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India Author
  • Shankar Durairaj Department of Pharmaceutical Chemistry, K.M. College of Pharmacy, Madurai, Tamil Nadu, India Author

DOI:

https://doi.org/10.62638/ZasMat1294

Abstract

This review examines the developing fields of self-healing coatings and smart materials, emphasizing how they have the potential to transform a number of sectors by improving efficiency, sustainability, and durability. A growing number of self-healing coatings incorporate smart materials, which react to environmental stimuli like temperature, pressure, and electric fields, allowing damage to be repaired without the need for outside assistance. Even with some improvements in self-healing processes, there is still a great deal to learn about the long-term functionality and real-world uses of these materials, especially when paired with cutting-edge technology like nanomaterials. The most recent studies on self-healing coatings are summarized in this study, which also offers insights into the mechanisms underlying these advancements, such as vascular systems, reversible chemical bonding, and microencapsulation. It also emphasizes the various ways that smart materials are being used in sectors including construction, automotive, healthcare, and aerospace, showcasing their potential to save maintenance costs and enhance sustainability in general. This study discusses current issues and suggests future lines of inquiry that may propel the development and commercialization of these technologies for practical uses.

Keywords:

advanced coatings, industry applications, nanotechnology, self-healing coatings, smart coating systems, smart materials, sustainability

References

Y. Yu, Y. Shi, H. Kurita, Y. Jia, Z. Wang, F. Narita (2023) Carbon Fiber-Reinforced Piezoelectric Nanocomposites: Design, Fabrication and Evaluation for Damage Detection and Energy Harvesting, Compos. Part A Appl. Sci. Manuf., 172, 107587. https://doi.org/10.1016/j.compositesa.2023.107587

J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson (2014) A review of shape memory alloy research, applications and opportunities, Mater. Des., 56, pp. 1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084

T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee (2010) Recent advances in graphene based polymer composites, Prog. Polym. Sci., 35, pp. 1350–1375. https://doi.org/10.1016/j.progpolymsci.2010.07.005

M.R. Kessler, N.R. Sottos, S.R. White (2003) Self-healing structural composite materials, Compos. Part A Appl. Sci. Manuf., 34, pp. 743–753. https://doi.org/10.1016/S1359-835X(03)00138-6

S. Kim, H. Jeon, J.M. Koo, D.X. Oh, J. Park (2024) Practical Applications of Self-Healing Polymers Beyond Mechanical and Electrical Recovery, Adv. Sci., 11, e2302463. https://doi.org/10.1002/advs.202302463

S. Zhang, N. van Dijk, S. van der Zwaag (2020) A Review of Self-healing Metals: Fundamentals, Design Principles and Performance, Acta Metall. Sin., 33, pp. 1167–1179. https://doi.org/10.1007/s40195-020-01102-3

N. Sekine, W. Nakao (2023) Advanced Self-Healing Ceramics with Controlled Degradation and Repair by Chemical Reaction, Materials, 16, 6368. https://doi.org/10.3390/ma16196368

S. Parihar, B. Gaur (2023) Self healing approaches in polymeric materials-an overview, J. Polym. Res., 30, 217. https://doi.org/10.1007/s10965-023-03590-0

K. Venkata Chalapathi, M.N. Prabhakar, D.-W. Lee, J.-I. Song (2023) Development of thermoplastic self-healing panels by 3D printing technology and study extrinsic healing system under low-velocity impact analysis, Polym. Test., 119, 1079 23. https://doi.org/10.1016/j.polymertesting.2023.107923

S. Wang, M.W. Urban (2020) Self-healing polymers, Nat. Rev. Mater., 5, pp. 562–583. https://doi.org/10.1038/s41578-020-0202-4

Y. Yang, M.W. Urban (2013) Self-healing polymeric materials, Chem. Soc. Rev., 42, pp. 7446–7467. https://doi.org/10.1039/C3CS60109A

D.V. Zakharova, A.A. Pavlov, A.V. Polezhaev (2019) Synthesis of self-healing polymers precursors from available bio-renewable raw materials, IOP Conference Series: Materials Science and Engineering, 683, 012002. https://doi.org/10.1088/1757-899X/683/1/012002

F. Zhang, P. Ju, M. Pan, D. Zhang, Y. Huang, G. Li, X. Li (2018) Self-healing mechanisms in smart protective coatings: A review, Corros. Sci., 144, pp. 74–88. https://doi.org/10.1016/j.corsci.2018.08.005

N.A. Johari, J. Alias, A. Zanurin, N.S. Mohamed, N.A. Alang, M.Z.M. Zain (2022) Anti-corrosive coatings of magnesium: A review, Mater. Today Proc., 48, pp. 1842–1848. https://doi.org/10.1016/j.matpr.2021.09.192

S.F. Da Costa, M. Zuber, M. Zakharova, A. Mikhaylov, T. Baumbach, D. Kunka, S.H. Pezzin (2021) Self-healing triggering mechanism in epoxy-based material containing microencapsulated amino-polysiloxane, Nano Sel., 3, pp. 577–593. https://doi.org/10.1002/nano.202100091

N.F. Mohd Sani, H.J. Yee, N. Othman, A.A. Talib, R.K. Shuib (2022) Intrinsic self-healing rubber: A review and perspective of material and reinforcement, Polym. Test., 111, 107598. https://doi.org/10.1016/j.polymertesting.2022.107598

V. Achal, A. Mukherjee (2015) A review of microbial precipitation for sustainable construction, Constr. Build. Mater., 93, pp. 1224–1235. https://doi.org/10.1016/j.conbuildmat.2015.04.051

H.M. Jonkers, A. Thijssen, G. Muyzer, O. Copuroglu, E. Schlangen (2010) Application of bacteria as self-healing agent for the development of sustainable concrete, Ecol. Eng., 36, pp. 230–235. https://doi.org/10.1016/j.ecoleng.2008.12.036

A. Rekondo, R. Martin, A. Ruiz de Luzuriaga, G. Cabañero, H.J. Grande, I. Odriozola (2014) Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis, Mater. Horiz., 1, pp. 237–240. 10.1039/C3MH00061C

R. Martin, A. Rekondo, A. Ruiz de Luzuriaga, G. Cabañero, H.J. Grande, I. Odriozola (2014) The processability of a poly(urea-urethane) elastomer reversibly crosslinked with aromatic disulfide bridges, J. Mater. Chem. A, 2, pp. 5710. https://doi.org/10.1039/C3TA14927G

C.-C. Liu, A.-Y. Zhang, L. Ye, Z.-G. Feng (2012) Self-healing biodegradable poly(urea-urethane) elastomers based on hydrogen bonding interactions, Chin. J. Polym. Sci., 31, pp. 251–262. https://doi.org/10.1007/s10118-013-1211-1

G. Rivero, L.-T.T. Nguyen, X.K.D. Hillewaere, F.E. Du Prez (2014) One-Pot Thermo-Remendable Shape Memory Polyurethanes, Macromolecules, 47, pp. 2010–2018. https://doi.org/10.1021/ma402471c

L. Brunsveld, B.J. Folmer, E.W. Meijer, R.P. Sijbesma (2001) Supramolecular polymers, Chem. Rev., 101, pp. 4071–4098. https://doi.org/10.1021/cr990125q

M.D. Hager, S. Bode, C. Weber, U.S. Schubert (2015) Shape memory polymers: Past, present and future developments, Prog. Polym. Sci., 49–50, pp. 3–33. https://doi.org/10.1016/j.progpolymsci.2015.04.002

Y. Lei, Z. Qiu, N. Tan, H. Du, D. Li, J. Liu, T. Liu, W. Zhang, X. Chang (2020) Polyaniline/CeO2 nanocomposites as corrosion inhibitors for improving the corrosive performance of epoxy coating on carbon steel in 3.5% NaCl solution, Prog. Org. Coat., 139, 105430. https://doi.org/10.1016/j.porgcoat.2019.105430

E.K. Karaxi, I.A. Kartsonakis, C.A. Charitidis (2019) Assessment of Self-Healing Epoxy-Based Coatings Containing Microcapsules Applied on Hot Dipped Galvanized Steel, Front. Mater., 6, 222. https://doi.org/10.3389/fmats.2019.00222

Y. Chen, L. Wu, W. Yao, J. Wu, M. Serdechnova, C. Blawert, M.L. Zheludkevich, Y. Yuan, Z. Xie, F. Pan (2023) “Smart” micro/nano container-based self-healing coatings on magnesium alloys: A review, J. Magnes. Alloys, 11, pp. 2230–2259. https://doi.org/10.1016/j.jma.2023.06.006

A. Ghazi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh, M. Rostami (2015) The application of benzimidazole and zinc cations intercalated sodium montmorillonite as smart ion exchange inhibiting pigments in the epoxy ester coating, Corros. Sci., 94, pp. 207–217. https://doi.org/10.1016/j.corsci.2015.02.007

Y. Ren, W. Sun, J. Fan, Z. Yu, L. Wang, Z. Yang, G. Liu (2024) Functionalization and morphology control of graphene oxide for intelligent barrier coatings against corrosion, Surf. Coat. Technol., 494, p. 131326. https://doi.org/10.1016/j.surfcoat.2024.131326

N. Acharya, G.J. Weng, J.W. Fisher, P.L. Hudson, X. Li, X. Wu (2021) A review of self-healing materials: Theories, methods and applications, J. Mater. Sci., 56, pp. 12679–12718. https://doi.org/10.1016/j.electacta.2021.139730

A. Kontiza, I.A. Kartsonakis (2024) Smart Composite Materials with Self-Healing Properties: A Review on Design and Applications, Polymers, 16(15), 2115. https://doi.org/10.3390/polym16152115

D. Banerjee, X. Guo, J. Benavides, B. Rameau, S.G. Cloutier (2020) Designing green self-healing anticorrosion conductive smart coating for metal protection, Smart Mater. Struct., 29(10), 105027. 10.1088/1361-665X/aba849

R. Wang, L. Cao, W. Wang, Z. Mao, D. Han, Y. Pei, Y. Chen, W. Fan, W. Li, S. Chen (2024) Construction of Smart Coatings Containing Core–Shell Nanofibers with Self-Healing and Active Corrosion Protection, ACS Appl. Mater. Interfaces, 16(32), pp. 42748–42761. https://doi.org/10.1021/acsami.4c09260

S. Sanyal, S. Park, R. Chelliah, S.J. Yeon, K. Barathikannan, S. Vijayalakshmi, Y.J. Jeong, M. Rubab, D.H. Oh (2024) Emerging Trends in Smart Self-Healing Coatings: A Focus on Micro/Nanocontainer Technologies for Enhanced Corrosion Protection, Coatings, 14(3), 324. https://doi.org/10.3390/coatings14030324

H. Vafaeenezhad, R. Eslami-Farsani (2024) Self-Healing and Self-Lubricating Nano-hybrid Smart Coatings, in Nano-hybrid Smart Coatings: Advancements in Industrial Efficiency and Corrosion Resistance, pp. 303–352, American Chemical Society. 10.1021/bk-2024-1469.ch014

F. Zhang, P. Ju, M. Pan, D. Zhang, Y. Huang, G. Li, X. Li (2018) Self-healing mechanisms in smart protective coatings: A review, Corros. Sci., 144, pp. 74–88. https://doi.org/10.1016/j.corsci.2018.08.005

S. Jung, H.G. Jang, J.Y. Jo, Y.S. Kim, D.C. Lee, J. Kim (2023) Smart Materials with Dual Functionality: Repeatable Damage-Detection and Self-Healing, ACS Appl. Mater. Interfaces, 15(21), pp. 26028–26036. https://doi.org/10.1021/acsami.3c04194

Z. Sabet-Bokati, K. Sabet-Bokati, Z. Russell, K. Morshed-Behbahani, S. Ouanani (2024) Anticorrosion shape memory-assisted self-healing coatings: A review, Prog. Org. Coat., 188, 108193. https://doi.org/10.1016/j.porgcoat.2023.108193

Y. Liu, Y. Zhou, L. Tian, J. Zhao, J. Sun (2024) Intelligent anti-corrosion coating with self-healing capability and superior mechanical properties, J. Mater. Sci., pp. 1–19. https://doi.org/10.1007/s10853-024-10175-9

B. Li, D. Njuko, M. Meng, A. Tang, Y. Li (2022) Designing smart microcapsules with natural polyelectrolytes to improve self-healing performance for water-based polyurethane coatings, ACS Appl. Mater. Interfaces, 14(47), pp. 53370–53379. https://doi.org/10.1021/acsami.2c18339

T. Wang, J. Du, S. Ye, L. Tan, J. Fu (2019) Triple-stimuli-responsive smart nanocontainers enhanced self-healing anticorrosion coatings for protection of aluminum alloy, ACS Appl. Mater. Interfaces, 11(4), pp. 4425–4438. https://doi.org/10.1021/acsami.8b19950

S.Y. Li, H. Li, Y. Zhang, W. Yang, P. Guo, X.W. Li, A.Y. Wang (2024) Dense Al₂O₃ sealing inhibited high hydrostatic pressure corrosion of Cr/GLC coating, npj Mater. Degrad., 8, pp. 1–10. https://doi.org/10.1038/s41529-024-00469-3

W. Li, J.J. Tao, Y.X. Chen, K.Y. Wu, J. Luo, R. Liu (2023) Porous microspheres with corrosion sensing and active protecting abilities towards intelligent self-reporting and anti-corrosion coating, Prog. Org. Coat., 178, 107468. https://doi.org/10.1016/j.porgcoat.2023.107468

Y.S. Liang, B. He, G. Fu, S.J. Wu, B. Fan (2023) Effects of ambient temperature and state of galvanized layer on corrosion of galvanized steel in high-humidity neutral atmosphere, Materials, 16, 3656. https://doi.org/10.3390/ma16103656

C.A. Xu, X.C. Li, Z.B. Tong, Z.Z. Chu, H. Fang, Y. Hu, Z.H. Yang (2024) Mimosa inspired intelligent anti-corrosive composite coating by incorporating lignin and pyridine derivatives grafted graphene oxide, Chem. Eng. J., 483, 149316. https://doi.org/10.1016/j.cej.2024.149316

C.B. Liu, H. Wu, Y.J. Qiang, H.C. Zhao, L.P. Wang (2021) Design of smart protective coatings with autonomous self-healing and early corrosion reporting properties, Corros. Sci., 184, 109355. https://doi.org/10.1016/j.corsci.2021.109355

C. Xie, Y. Jia, M.S. Xue, Z.Z. Yin, Y.D. Luo, Z. Hong, W.Q. Liu (2022) Anti-corrosion and self-healing behaviors of waterborne polyurethane composite coatings enhanced via chitosan-modified graphene oxide and phosphate intercalated hydrotalcite, Prog. Org. Coat., 168, 106881. https://doi.org/10.1016/j.porgcoat.2022.106881

F.G. Agayev, S.V. Trukhanov, A.V. Trukhanov, S.H. Jabarov, G.S. Ayyubova, A.V. Trukhanov (2022) Study of structural features and thermal properties of barium hexaferrite upon indium doping, J. Therm. Anal. Calorim., 147, pp. 14107–14114. https://doi.org/10.1007/s10973-022-11742-5

D.A. Vinnik, A.Y. Starikov, V.E. Zhivulin, K.A. Astapovich, V.A. Turchenko, A.V. Trukhanov (2021) Structure and magnetodielectric properties of titanium substituted barium hexaferrites, Ceram. Int., 47, pp. 17293–17306. https://doi.org/10.1016/j.ceramint.2021.03.041

R.I. Shakirzyanov, A.L. Kozlovskiy, M.V. Zdorovets, A.L. Zheludkevich, D.I. Shlimas, A.V. Trukhanov (2023) Impact of thermobaric conditions on phase content, magnetic and electrical properties of the CoFe₂O₄ ceramics, J. Alloys Compd., 954, 170083. https://doi.org/10.1016/j.jallcom.2023.170083

K. Morshed-Behbahani et al. (2022) A review on the role of surface nanocrystallization in corrosion of stainless steel, J. Mater. Res. Technol., 19, pp. 1120–1147. https://doi.org/10.1016/j.jmrt.2022.05.094

D.-H. Xia et al. (2022) Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: a critical review, J. Mater. Sci. Technol., 112, pp. 151–183. https://doi.org/10.1016/j.jmst.2021.11.004

S.A. Umoren et al. (2019) Protective polymeric films for industrial substrates: a critical review on past and recent applications with conducting polymers and polymer composites/nanocomposites, Prog. Mater. Sci., 104, pp. 380–450. https://doi.org/10.1016/j.pmatsci.2019.04.002

C. Erdogan et al. (2021) Conceptual sacrificial anode cathodic protection design for offshore wind monopiles, Ocean Eng., 235, p.109339. https://doi.org/10.1016/j.oceaneng.2021.109339

G. Grundmeier, et al. (2000) Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation, Electrochim. Acta, pp. 1–12. https://doi.org/10.1016/S0013-4686(00)00348-0

J.S. George, et al. (2022) Advances and future outlook in epoxy/graphene composites for anticorrosive applications, Prog. Org. Coat., pp. 1–15. https://doi.org/10.1016/j.porgcoat.2021.106571

A.A. Nazeer, et al. (2018) Potential use of smart coatings for corrosion protection of metals and alloys: a review, J. Mol. Liq., 261, pp. 495–510. https://doi.org/10.1016/j.molliq.2018.01.027

M. Samadzadeh, et al. (2010) A review on self-healing coatings based on micro/nanocapsules, Prog. Org. Coat., 69(1), pp. 3–14. https://doi.org/10.1016/j.porgcoat.2010.01.006

F. Zhang, et al. (2018) Self-healing mechanisms in smart protective coatings: a review, Corros. Sci., 144, pp. 74–88. https://doi.org/10.1016/j.corsci.2018.08.005

X. Li, D. Zhang, Z. Liu, Z. Li, C. Du, C. Dong (2015) Materials science: share corrosion data, Nature, 527, pp. 441–442. https://doi.org/10.1038/527441a

B. Hou, X. Li, X. Ma, C. Du, D. Zhang, M. Zheng, W. Xu, D. Lu, F. Ma (2017) The cost of corrosion in China, npj Mater. Degrad., 1, p. 4. https://doi.org/10.1038/s41529-017-0005-2

D. Grigoriev, E. Shchukina, D.G. Shchukin (2017) Nanocontainers for self-healing coatings, Adv. Mater. Interfaces, 4, p. 1600590. https://doi.org/10.1002/admi.201600318

W. Wang, L. Xu, F. Liu, X. Li, L. Xing (2017) Synthesis of isocyanate microcapsules and micromechanical behavior improvement of microcapsule shells by oxygen plasma treated carbon nanotubes, J. Mater. Chem. A, 1(5), pp. 776–782. https://doi.org/10.1039/C2TA00612J

J. Li, Q. Feng, J. Cui, Q. Yuan, H. Qiu, S. Gao, J. Yang (2017) Self-assembled graphene oxide microcapsules in Pickering emulsions for self-healing waterborne polyurethane coatings, Compos. Sci. Technol., 151, pp. 282–290. https://doi.org/10.1016/j.compscitech.2017.07.031

M. Mahmoudian, E. Nozad, M.G. Kochameshki, M. Enayati (2018) Preparation and investigation of hybrid self-healing coatings containing linseed oil loaded nanocapsules, potassium ethyl xanthate and benzotriazole on copper surface, Prog. Org. Coat., 120, pp. 167–178. https://doi.org/10.1016/j.porgcoat.2018.03.014

D.A. Leal, I.C. Riegel-Vidotti, M.G.S. Ferreira, C.E.B. Marino (2018) Smart coating based on double stimuli-responsive microcapsules containing linseed oil and benzotriazole for active corrosion protection, Corros. Sci., 130, pp. 56–63. https://doi.org/10.1016/j.corsci.2017.10.009

M. Behzadnasab, S. Mirabedini, M. Esfandeh, R. Farnood (2017) Evaluation of corrosion performance of a self-healing epoxy-based coating containing linseed oil-filled microcapsules via electrochemical impedance spectroscopy, Prog. Org. Coat., 105, pp. 212–224. https://doi.org/10.1016/j.porgcoat.2017.01.006

C.D. Dieleman, P.J. Denissen, S.J. Garcia (2018) Long‐term active corrosion protection of damaged Coated‐AA2024‐T3 by embedded electrospun inhibiting nanonetworks, Adv. Mater. Interfaces, 5, p. 1800176. https://doi.org/10.1002/admi.201800176

Downloads

Published

27-08-2025

Issue

Section

Review Paper