Production of liquid fuel by pyrolysis of waste polyolefins
DOI:
https://doi.org/10.62638/ZasMat1384Abstract
Growth in the manufacture of easily accessible oil, the main source of high energy liquid transportation fuels, will not match the projected rate of demand growth, especially in developing countries. Waste polyolefins can replace part of fossil petroleum as a feedstock for liquid fuel. The article considers technical and technological solutions for the utilization of polyolefins, primarily low-density polyethylene (LDPE) and polypropylene (PP) into liquid fuel using slow pyrolysis in a flow reactor at temperature 590°C and pressure 1.0 MPa. The reactor design allowed the removal of volatiles from the reaction zone in accordance with the Le Chatelier-Brown principle and yield of liquid products from LDPE reached 55.9-93.5%. The thermogravimetric and chromatography-mass-spectrometry characteristics of the obtained plastic derived fuel oil were close to the corresponding characteristics of kerosene and diesel fuels. Gross calorific values of plastic derived fuel samples were also close to those for conventional mineral-derived liquid fuels. Thus, liquid fuels produced by pyrolysis of waste polyolefins can be credible source of energy for isolated built environment areas with low own energy resources.
Keywords:
liquid fuel, polyolefins, slow pyrolysis, waste plasticsReferences
X.Zhou, F.Wang, H. Hu, L. Yang, P.Guo, B. Xiao(2011) Assessment of sustainable biomass resource for energy use in China, Biomass and Bioenergy, 35(1), 1–11, https://doi.org/10.1016/j.biombioe.2010.08.006.
D.Zhang, J. Wang, Y. Lin, Y.Si, C.Huang, J. Yang, B. Huang, W. Li(2017) Present situation and future prospect of renewable energy in China, Renewable and Sustainable Energy Reviews, 76,865–871, https://doi.org/10.1016/j.rser.2017.03.023.
A. M. Ragossnig, P. Agamuthu(2021) Plastic waste: Challenges and opportunities, Waste Management & Research, 39(5), 629–630, https://doi.org/10.1177/0734242X211013428.
P. Agarwal, S. Prakash, G. Saini, I. S. M. Noor, (2024). Recent advances in research from plastic materials to microplastics,ZastitaMaterijala, 65(4), 595-611,DOI: https://doi.org/10.62638/ZasMat1176.
H. I. Abdel-Shafy, M. S. M. Mansour (2018) Solid waste issue: Sources, composition, disposal, recycling, and valorization, Egyptian Journal of Petroleum, 27(4), 1275-1290, https://doi.org/10.1016/j.ejpe.2018.07.003.
M. Motawie, S. A. Hanafi, M. S. Elmelawy, S. M. Ahmed, N. A. Mansour, M. S. A. Darwish, D. E. Abulyazied(2015) Wax co-cracking synergism of high density polyethylene to alternative fuels, Egyptian Journal of Petroleum, 24(3), 353–361, https://doi.org/10.1016/j.ejpe.2015.07.004.
K. Ragaert, L. Delva, K. Van Geem(2017) Mechanical and chemical recycling of solid plastic waste, Waste Management, 69, 24–58, https://doi.org/10.1016/j.wasman.2017.07.044.
N. Srisaeng, N. Tippayawong, K. Y. Tippayawong (2017) Energetic and Economic Feasibility of RDF to Energy Plant for a Local Thai Municipality, Energy Procedia, 110, 115–120, https://doi.org/10.1016/j.egypro.2017.03.115.
S. Longo, M. Cellura, P. Girardi (2020) Life Cycle Assessment of electricity production from refuse derived fuel: A case study in Italy, Science of The Total Environment, 738, 139719, https://doi.org/10.1016/j.scitotenv.2020.139719.
V. R. S. Cheela, M. John, B. Dubey (2021) Quantitative determination of energy potential of refuse derived fuel from the waste recovered from Indian landfill, Sustainable Environment Research, 31,24-31,https://doi.org/10.1186/s42834-021-00097-5
A. H. A. Ali, S. S. Waheed, S. M. Rabia, N. M. Ghazaly (2024). Assessment of the effect of mixing polystyrene (PS) with sawdust (SD) on copyrolysis products, Zastita Materijala, 65 (2), 307-314, https://doi.org/10.62638/ZasMat1124.
R. Miandad, M. A. Barakat, A. S. Aburiazaiza, M. Rehan, I. M. I. Ismail, A. S. Nizami(2017) Effect of plastic waste types on pyrolysis liquid oil, International Biodeterioration& Biodegradation, 119, 239–252, https://doi.org/10.1016/j.ibiod.2016.09.017.
S.M. Al-Salem, P. Lettieri, J. Baeyens (2009) Recycling and recovery routes of plastic solid waste (PSW): A review, Waste Management, 29(10), 2625–2643, https://doi.org/10.1016/j.wasman.2009.06.004.
A. K. Panda, R. K. Singh, D. K. Mishra (2010)Thermolysis of waste plastics to liquid fuel A suitable method for plastic waste management and manufacture of value added products - A world prospective, Renewable and Sustainable Energy Reviews, 14(1), 233–48, https://doi.org/10.1016/j.rser.2009.07.005.
L. Patil, A. K. Varma, G. Singh, P. Mondal(2017) Thermocatalytic Degradation of High Density Polyethylene into Liquid Product, Journal of Polymers and the Environment, 26(5), 1920–1929, https://doi.org/10.1007/s10924-017-1088-0.
Y.Rodríguez Lamar, J.Noboa, A. S. Torres Miranda, D. Almeida Streitwieser (2021) Conversion of PP, HDPE and LDPE Plastics into Liquid Fuels and Chemical Precursors by Thermal Cracking”, Journal of Polymers and the Environment, 29, 3842–3853,https://doi.org/10.21203/rs.3.rs-211010/v1.
C.J. Jangid, K.M. Miller, J.R. Seay(2022) Analysis of Plastic-Derived Fuel Oil Produced from High- and Low-Density Polyethylene, Recycling, 7, 29, https://doi.org/10.3390/recycling7030029.
S. Breyer, L. Mekhitarian, B. Rimez, B. Haut (2017) Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils, Waste Management, 60, 363–374, https://doi.org/10.1016/j.wasman.2016.12.011.
C.A. Joshi, J.R. Seay(2016) An Appropriate Technology Based Solution to Convert Waste Plastic into Fuel Oil in Underdeveloped Regions”, Journal of Sustainable Development, 9(4), 133-143,https://doi.org/10.5539/jsd.v9n4p133.
O.Y. Yansaneh, S.H. Zein(2022) Recent Advances on Waste Plastic Thermal Pyrolysis: A Critical Overview”, Processes, 10, 332, https://doi.org/10.3390/pr10020332.
K. Murata, K. Sato, Y. Sakata (2004) Effect of pressure on thermal degradation of polyethylene”, Journal of Analytical and Applied Pyrolysis, 71(2), 569–589, https://doi.org/10.1016/j.jaap.2003.08.010.
M. Raza, A. Inayat, A. Ahmed, F. Jamil, C. Ghenai, S.R. Naqvi, A. Shanableh, M. Ayoub, A. Waris, Y.-K. Park(2021) Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing, Sustainability, 13, 11061, https://doi.org/10.3390/su131911061.
J. Heikkinen, J. Hordijk, W. de Jong, H. Spliethoff (2004) Thermogravimetry as a tool to classify waste components to be used for energy generation, Journal of Analytical and Applied Pyrolysis, 71(2), 883–900, https://doi.org/10.1016/j.jaap.2003.12.001.
S. M. Al-Salem, Y. Yang, J. Wang, G. A. Leeke (2020) Pyro-Oil and Wax Recovery from Reclaimed Plastic Waste in a Continuous Auger Pyrolysis Reactor, Energies, 13(8),2040, https://doi.org/10.3390/en13082040.
N. Zhou, L. Dai, Y. Lv, H. Li, W. Deng, F. Guo, R. Ruan(2021) Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production, Chemical Engineering Journal, 418,129412, https://doi.org/10.1016/j.cej.2021.129412.
D. Gromov, A. Toikka(2020) Toward Formal Analysis of Thermodynamic Stability: Le Chatelier—Brown Principle, Entropy, 22(10), 1113, https://doi.org/10.3390/e22101113.
P. Dasmeh, D. J. Searles, D. Ajloo, D. J. Evans, S. R. Williams (2009) On violations of Le Chatelier’s principle for a temperature change in small systems observed for short times, The Journal of Chemical Physics, 131(21), 214503, https://doi.org/10.1063/1.3261849.
B. Rimez, S. Breyer, O. Vekemans, B. Haut (2020) Co-Pyrolysis of Low-Density Polyethylene and Motor Oil—Investigation of the Chemical Interactions between the Components, Recycling, 5(4),33, https://doi.org/10.3390/recycling5040033.
W. Wang, Q. Yu, H. Meng, W. Han, J. Li, J. Zhang (2018) Catalytic liquefaction of municipal sewage sludge over transition metal catalysts in ethanol-water co-solvent, Bioresource Technology, 249, 361–367, https://doi.org/10.1016/j.biortech.2017.09.205
W. Arjharn, P. Liplap, S. Maithomklang, K. Thammakul, S. Chuepeng, E. Sukjit(2022) Distilled Waste Plastic Oil as Fuel for a Diesel Engine: Fuel Production, Combustion Characteristics, and Exhaust Gas Emissions, ACS Omega, 7(11), 9720–9729, https://doi.org/10.1021/acsomega.1c07257.
C. Chaiya, N. Pankumpet, B. Buapibal, B. Chalermsinsuwan(2020) Alternative liquid fuel from pyrolysis of polyethylene wax, Energy Reports, 6, 1262–1267, https://doi.org/10.1016/j.egyr.2020.11.045.
K. J. Burch, E. G. Whitehead (2004) Melting-Point Models of Alkanes, Journal of Chemical & Engineering Data, 49(4), 858–863, https://doi.org/10.1021/je034185b.
S. Zhang, Y. Zhang, J.W. Tierney, I. Wender(2001) Anion-modified zirconia: effect of metal promotion and hydrogen reduction on hydroisomerization of n-hexadecane and Fischer–Tropsch waxes, Fuel Processing Technology, 69(1), 59–71, https://doi.org/10.1016/S0378-3820(00)00133-8.
J. Huang, C. He, H. Tong, G. Pan (2017) Studies on thermal decomposition behaviors of polypropylene using molecular dynamics simulation, IOP Conference Series: Earth and Environmental Science, 94, 012160, https://doi.org/10.1088/1755-1315/94/1/012160






