MXenes: Synthesis, Properties, and Applications in Advanced Energy Storage Technologies

Authors

DOI:

https://doi.org/10.62638/ZasMat1216

Abstract

MXenes have emerged as highly promising materials in the field of advanced energy storage technologies, owing to their distinctive properties and versatile applications. This review offers a comprehensive analysis of MXenes, focusing on their synthesis methods, fundamental properties, and applications in rechargeable batteries and supercapacitors. In response to increasing global energy demands, MXenes present compelling solutions due to their exceptional electrical and electrochemical characteristics. These include high conductivity, large surface area, hydrophilicity, and a unique two-dimensional structure comprising metal carbides, nitrides, and carbonitrides. Additionally, this review incorporates a detailed bibliometric analysis using computational tools such as VOSviewer, which examines the global landscape of MXene research spanning from 2012 to 2024. This analysis identifies collaborative trends among different countries, institutions, authors, and journals, highlighting leading research areas. Overall, this review underscores the significant potential of MXenes in advancing energy storage technologies. It provides insights into future research directions and practical applications that could effectively meet the growing energy demands driven by electric vehicles and portable electronics.

Keywords:

MXene, 2D materials, Energy storage, Supercapacitor, bibliometric analysis
Supporting Agencies
SEED funding program at UPES (UPES/R&D-SOE/07032022/08 dated 12/05/2022) , Department of Science and Technology, India under SERB-SURE Grant (Grant No. SUR/2022/005356 dated 09-05-2023), CRG Grant (Grant No. CRG/2023/007045), SIRE fellowship (SIR/2022/001489)

References

P.Poonam, K. Sharma, A. Arora, S.K.Tripathi (2019) Review of supercapacitors: Materials and devices. J. Energy Storage, 21, 801–825.

https://doi.org/10.1016/j.est.2019.01.010.

X. Zhang, L. Hou, A.Ciesielski, P. Samorì (2016) 2D Materials Beyond Graphene for High-Performance Energy Storage Applications. Adv. Energy Mater, 6, https://doi.org/10.1002/aenm.201600671.

Y. Gogotsi, P. Simon (2011) True performance metrics in electrochemical energy storage. Science, (80-. ), 334, 917–918

https://doi.org/10.1126/science.1213003.

F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini(2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science, (80-. ), 347, 1246501

https://doi.org/10.1126/science.1246501.

D. Larcher, J.-M. Tarascon(2015) Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem., 7, 19–29,

https://doi.org/10.1038/nchem.2085.

Y. Sun, D. Chen, Z. Liang (2017) Two-dimensional MXenes for energy storage and conversion applications. Mater. Today Energy, 5, 22–36, https://doi.org/10.1016/j.mtener.2017.04.008.

K.S. Novoselov, A.K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V Dubonos, I. V Grigorieva, A.A. Firsov(2004) Electric field effect in atomically thin carbon films. Science, (80-. ), 306, 666–669, https://doi.org/10.1126/science.1102896.

E.P. Randviir, D.A.C. Brownson, C.E. Banks (2014) A decade of graphene research: production, applications and outlook. Mater. Today, 17, 426–432, https://doi.org/10.1016/j.mattod.2014.06.001.

K. Poonia, A.S. Lather, S. Jangra, R.S. Kundu, A. Nehra (2023) Analysis of structural and electrical properties of Sn modified Ca0. 6Sr0. 4TiO3 ceramics. Mater. Today Proc.

http://dx.doi.org/10.1016/j.matpr.2023.06.068.

J. Sharma, A. Bhandari, S. Jangra, M.S. Goyat (2024) Sol–gel derived highly hydrophobic Polystyrene/SiO2 spray coatings on polished stainless steel and textured aluminium substrates. Trans. Inst. Met. Finish., 102, 77–82

https://doi.org/10.1080/00202967.2024.2315777.

Y. Gogotsi, B. Anasori (2019) The rise of MXenes. ACS Nano, 13, 8491–8494,

https://doi.org/10.1021/acsnano.9b06394.

S. Jangra, A. Raza, B. Kumar, J. Sharma, S. Das, K. Pandey, Y.K. Mishra, M.S. Goyat (2025) MXene decorated ZnO-tetrapod for efficient degradation of Methyl Orange, Methylene Blue, and Rhodamine B dyes. Mater. Sci. Eng. B, 311, 117832,

https://doi.org/10.1016/j.mseb.2024.117832.

S. Jangra, B. Kumar, J. Sharma, S. Sengupta, S. Das, R.K. Brajpuriya, A. Ohlan, Y.K. Mishra, M.S. Goyat (2024) A review on overcoming challenges and pioneering advances: MXene-based materials for energy storage applications. J. Energy Storage, 101, 113810

https://doi.org/10.1016/j.est.2024.113810.

Y. Ren, Q. He, T. Xu, W. Zhang, Z. Peng, B. Meng(2023) Recent Progress in MXene Hydrogel for Wearable Electronics. BIOSENSORS-BASEL, 13, https://doi.org/10.3390/bios13050495.

R. Verma, P. Thakur, A. Chauhan, R. Jasrotia, A. Thakur (2023) A review on MXene and its’ composites for electromagnetic interference (EMI) shielding applications. Carbon, N. Y., 208, 170–190

http://dx.doi.org/10.1016/j.carbon.2023.03.050.

M.S. Irfan, M.A. Ali, T. Khan, S. Anwer, K. Liao, R. Umer (2023) MXene and graphene coated multifunctional fiber reinforced aerospace composites with sensing and EMI shielding abilities. Compos. Part A Appl. Sci. Manuf., 165, 107351, https://doi.org/10.1016/j.compositesa.2022.107351.

Y. Li, S. Huang, S. Peng, H. Jia, J. Pang, B. Ibarlucea, C. Hou, Y. Cao, W. Zhou, H. Liu (2023) Toward smart sensing by MXene. Small, 19, 2206126, https://doi.org/10.1002/smll.202206126.

S.M. Majhi, A. Ali, Y.E. Greish, H.F. El-Maghraby, S.T. Mahmoud (2023) V2CTX MXene-based hybrid sensor with high selectivity and ppb-level detection for acetone at room temperature. Sci. Rep., 13, 3114,https://doi.org/10.1038/s41598-023-30002-6.

Z.-Q. Wang, Y.-W. Pan, J. Wu, H.-B. Qi, S. Zhu, Z.-J.Gu (2024) A bibliometric analysis of molybdenum-based nanomaterials in the biomedical field. Tungsten, 6, 17–47,https://doi.org/10.1007/s42864-023-00225-1.

S. Nezami, F. Moazami, M. Helmi, A. Hemmati, A. Ghaemi (2024) Properties of MXene, in: MXenes. Emerg. 2D Mater., Springer, pp, 45–56

https://doi.org/10.1007/978-981-97-4064-2_3.

Y. Wang, Y. Wang (2023) Recent progress in MXene layers materials for supercapacitors: High‐performance electrodes. SmartMat., 4, https://doi.org/10.1002/smm2.1130.

L. Zhang, W. Song, H. Liu, H. Ding, Y. Yan, R. Chen (2022) Influencing Factors on Synthesis and Properties of MXene: A Review. Processes., 10, 1–13, https://doi.org/10.3390/pr10091744.

M.A.K. Purbayanto, D. Bury, M. Chandel, Z.D. Shahrak, V.N. Mochalin, A. Wójcik, D. Moszczyńska, A. Wojciechowska, A. Tabassum, M. Naguib, A.M. Jastrzębska (2023) Ambient Processed rGO/Ti3CNTx MXene Thin Film with High Oxidation Stability, Photosensitivity, and Self-Cleaning Potential. ACS Appl. Mater. Interfaces, 15, 44075–44086

https://doi.org/10.1021/acsami.3c07972.

M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, (80-. ), 341, 1502–1505

https://doi.org/10.1126/science.1241488.

B. Soundiraraju, B.K. George (2017) Two-dimen-sional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano, 11, 8892–8900

https://doi.org/10.1021/acsnano.7b03129.

M. Rahman, M.S. Al Mamun (2023) Future prospects of MXenes: synthesis, functionalization, properties, and application in field effect transistors. Nanoscale Adv., 6, 367–385

https://doi.org/10.1039/d3na00874f.

J. Chen, Q. Jin, Y. Li, H. Shao, P. Liu, Y. Liu, P. Taberna, Q. Huang, Z. Lin, P. Simon (2023) Molten salt‐shielded synthesis (MS3) of MXenes in air, Energy Environ. Mater., 6, e12328

https://doi.org/10.1002/eem2.12328.

S.A. Thomas, A. Patra, B.M. Al-Shehri, M. Selvaraj, A. Aravind, C.S. Rout (2022) MXene based hybrid materials for supercapacitors: Recent developments and future perspectives. J. Energy Storage, 55, 105765

https://doi.org/10.1016/j.est.2022.105765.

S.Y. Pang, Y.T. Wong, S. Yuan, Y. Liu, M.K. Tsang, Z. Yang, H. Huang, W.T. Wong, J. Hao (2019) Universal Strategy for HF-Free Facile and Rapid Synthesis of Two-dimensional MXenes as Multifunctional Energy Materials. J. Am. Chem. Soc., 141, 9610–9616,

https://doi.org/10.1021/jacs.9b02578.

P. Simon, Y. Gogotsi (2008) Materials for electro-chemical capacitors. Nat. Mater., 7, 845–854,

https://doi.org/10.1038/nmat2297.

C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X.-L. Ma, H.-M. Cheng, W. Ren (2015) Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater., 14, 1135–1141

https://doi.org/10.1038/nmat4374.

J. Jia, T. Xiong, L. Zhao, F. Wang, H. Liu, R. Hu, J. Zhou, W. Zhou, S. Chen (2017) Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano, 11, 12509–12518,

https://doi.org/10.1021/acsnano.7b06607.

C. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng, W. Lan, A. Pakdel, J. Heier, F. Nüesch (2020) Two-Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties, and Electrochemical Energy Storage Applications. Energy Environ. Mater., 3, 29–55, https://doi.org/10.1002/eem2.12058.

Y.A. Kumar, C.J. Raorane, H.H. Hegazy, T. Ramachandran, S.C. Kim, M. Moniruzzaman (2023) 2D MXene-based supercapacitors: A promising path towards high-performance energy storage. J. Energy Storage, 72, 108433,

https://doi.org/10.1016/j.est.2023.108433.

R. Ibragimova, P. Erhart, P. Rinke, H.-P. Komsa (2021) Surface functionalization of 2D MXenes: trends in distribution, composition, and electronic properties. J. Phys. Chem. Lett., 12, 2377–2384

https://doi.org/10.1021/acs.jpclett.0c03710.

F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. M. Hong, C.M. Koo, Y. Gogots i (2023) Electromagnetic interference shielding with 2D transition metal carbides (MXenes).Science, 353, 933–947,https://doi.org/10.1126/science.aag2421.

F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam (2014) Two-dimensional material nanophotonics. Nat. Photonics, 8, 899–907, https://doi.org/10.1038/nphoton.2014.271.

G.R. Berdiyorov (2016) Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: First-principles calculations. AIP Adv., 6,

https://doi.org/10.1063/1.4948799.

K. Hantanasirisakul, M. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C.E. Ren, M.W. Barsoum, Y. Gogotsi (2016) Fabrication of Ti 3 C 2 T x MXene Transparent Thin Films with Tunable Optoelectronic Properties. 1–7,

https://doi.org/10.1002/aelm.201600050.

E. Satheeshkumar, T. Makaryan, A. Melikyan, H. Minassian, Y. Gogotsi, M. Yoshimura (2016) One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS. Sci. Rep., 6, 1–9,

https://doi.org/10.1038/srep32049.

K. Chaudhuri, M. Alhabeb, Z. Wang, V.M. Shalaev, Y. Gogotsi, A. Boltasseva (2018) Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene). ACS Photonics, 5, 1115–1122,

https://doi.org/10.1021/acsphotonics.7b01439.

B. Anasori, M.R. Lukatskaya, Y. Gogotsi (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater.

https://doi.org/10.1038/natrevmats.2016.98.

M. Khazaei, M. Arai, T. Sasaki, C. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe (2013) Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides. 2185–2192, https://doi.org/10.1002/adfm.201202502.

G. Gao, G. Ding, J. Li, K. Yao, M. Wu, M. Qian (2016) Monolayer MXenes: Promising half-metals and spin gapless semiconductors. Nanoscale, 8, 8986–8994

https://doi.org/10.1039/c6nr01333c.

B. Anasori, M.R. Lukatskaya, Y. Gogotsi (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater., 2,

https://doi.org/10.1038/natrevmats.2016.98.

A. VahidMohammadi, J. Rosen, Y. Gogotsi (2021) The world of two-dimensional carbides and nitrides (MXenes). Science, 372, eabf1581

https://doi.org/10.1126/science.abf1581.

J. Sharma, A. Bhandari, N. Khatri, S. Jangra, M.S. Goyat, Y.K. Mishra (2024) A brief review of transitional wetting regimes for superhydrophobic surfaces. J. Brazilian Soc. Mech. Sci. Eng., 46, 273, https://doi.org/10.1007/s40430-024-04844-8.

H. Peçenek, S. Yetiman, F.K. Dokan, M.S. Onses, E. Yılmaz, E. Sahmetlioglu (2022) Effects of carbon nanomaterials and MXene addition on the performance of nitrogen doped MnO2 based supercapacitors. Ceram. Int., 48, 7253–7260, 10.1016/j.ceramint.2021.11.285.

J. Nan, X. Guo, J. Xiao, X. Li, W. Chen, W. Wu, H. Liu, Y. Wang, M. Wu, G. Wang (2021) Nanoengineering of 2D MXene-Based Materials for Energy Storage Applications. Small, 17, 1–20, https://doi.org/10.1002/smll.201902085.

X. Xu, Y. Zhang, H. Sun, J. Zhou, F. Yang, H. Li, H. Chen, Y. Chen, Z. Liu, Z. Qiu (2021) Progress and perspective: MXene and MXene‐based nano-materials for high‐performance energy storage devices. Adv. Electron. Mater., 7, 2000967,

https://doi.org/10.1002/aelm.202000967.

X. Hui, X. Ge, R. Zhao, Z. Li, L. Yin (2020) Interface chemistry on MXene‐based materials for enhanced energy storage and conversion performance. Adv. Funct. Mater., 30, 2005190,

https://doi.org/10.1002/adfm.202005190.

H. Aghamohammadi, R. Eslami-Farsani, E. Castillo-Martinez (2022) Recent trends in the development of MXenes and MXene-based composites as anode materials for Li-ion batteries. J. Energy Storage, 47, 103572,https://doi.org/10.1016/j.est.2021.103572.

A.G. Olabi, Q. Abbas, A. Al Makky, M.A. Abdelkareem (2022) Supercapacitors as next generation energy storage devices: Properties and applications. Energy, 248, 123617,

https://doi.org/10.1016/j.energy.2022.123617.

X. Zhang, Z. Zhang, Z. Zhou (2018) MXene-based materials for electrochemical energy storage. J. Energy Chem., 27, 73–85

https://doi.org/10.1016/j.jechem.2017.08.004.

Y. Zhou, L. Yin, S. Xiang, S. Yu, H.M. Johnson, S. Wang, J. Yin, J. Zhao, Y. Luo, P.K. Chu (2024) Unleashing the Potential of MXene‐Based Flexible Materials for High‐Performance Energy Storage Devices. Adv. Sci., 11, 2304874

https://doi.org/10.1002/advs.202304874.

Y. Anil, C. Jayprakash, H.H. Hegazy, T. Ramachandran, S. Cheol (2023) 2D MXene-based supercapacitors : A promising path towards high-performance energy storage. J. Energy Storage, 72, 108433

https://doi.org/10.1016/j.est.2023.108433.

K. Maleski, C.E. Ren, M.-Q. Zhao, B. Anasori, Y. Gogotsi (2018) Size-dependent physical and electrochemical properties of two-dimensional MXene flakes, ACS Appl. Mater. Interfaces, 10, 24491–24498

https://doi.org/10.1021/acsami.8b04662.

M. Sajjad, M.I. Khan, F. Cheng, W. Lu (2021) A review on selection criteria of aqueous electrolytes performance evaluation for advanced asymmetric supercapacitors. J. Energy Storage, 40, 102729, http://dx.doi.org/10.1007/s43939-023-00065-3.

A. Patra, S. Kapse, R. Thapa, D.J. Late, C.S. Rout (2022) Quasi-one-dimensional van der Waals TiS3 nanosheets for energy storage applications: Theoretical predications and experimental validation. Appl. Phys. Lett., 120,

https://doi.org/10.1063/5.0080346.

M. Naguib, O. Mashtalir, M.R. Lukatskaya, B. Dyatkin, C. Zhang, V. Presser, Y. Gogotsi, M.W. Barsoum (2014) One-step synthesis of nano-crystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem. Commun., 50, 7420–7423,

https://doi.org/10.1039/C4CC01646G.

Z. Lin, P. Rozier, B. Duployer, P.-L. Taberna, B. Anasori, Y. Gogotsi, P. Simon (2016) Electroche-mical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochem. Commun., 72, 50–53,

http://dx.doi.org/10.1016/j.elecom.2016.08.023.

M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum (2014) Conductive two-dimensional titanium carbide ‘clay’with high volumetric capacitance. Nature, 516, 78–81, https://doi.org/10.1038/nature13970.

H. Hwang, S. Byun, S. Yuk, S. Kim, S.H. Song, D. Lee (2021) High-rate electrospun Ti3C2Tx MXene/carbon nanofiber electrodes for flexible supercapacitors. Appl. Surf. Sci., 556, 149710, https://doi.org/10.1016/j.apsusc.2021.149710.

R.B. Rakhi, B. Ahmed, D. Anjum, H.N. Alshareef (2016) Direct Chemical Synthesis of MnO2 Nanowhiskers on Transition-Metal Carbide Surfaces for Supercapacitor Applications. ACS Appl. Mater. Interfaces, 8, 18806–18814, https://doi.org/10.1021/acsami.6b04481.

X. Wu, B. Huang, R. Lv, Q. Wang, Y. Wang (2019) Highly flexible and low capacitance loss supercapacitor electrode based on hybridizing decentralized conjugated polymer chains with MXene. Chem. Eng. J., 378, 122246,

https://doi.org/10.1016/j.cej.2019.122246.

M. Naguib, J. Come, B. Dyatkin, V. Presser, P.L. Taberna, P. Simon, M.W. Barsoum, Y. Gogotsi (2012) MXene: A Promising Transition Metal Carbide Anode for Lithium-Ion Batteries. Electrochem. Commun., 16, 61-69,

https://doi.org/10.1016/j.elecom.2012.01.002.

D. Sun, M. Wang, Z. Li, G. Fan, L.-Z. Fan, A. Zhou (2014) Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun., 47, 80–83,

https://doi.org/10.1016/J.ELECOM.2014.07.026.

Y. Zhang, Z. Mu, J. Lai, Y. Chao, Y. Yang, P. Zhou, Y. Li, W. Yang, Z. Xia, S. Guo (2019) MXene/Si@ SiO x@ C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage, ACS Nano, 13, 2167–2175, doi:10.1021/ acsnano.8b08821.

K. Ma, H. Jiang, Y. Hu, C. Li (2018) 2D nanospace confined synthesis of pseudocapacitance‐ dominated MoS2‐in‐Ti3C2 superstructure for ultrafast and stable Li/Na‐ion batteries. Adv. Funct. Mater., 28, 1804306,

https://doi.org/10.1002/adfm.201804306.

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum (2011) Two-dimensional nanocrystals produced by exfoliation of Ti 3AlC 2. Adv. Mater., 23, 4248–4253, https://doi.org/10.1002/adma.201102306.

M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogots i(2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T x MXene). Chem. Mater., 29, 7633–7644,

https://doi.org/10.1021/acs.chemmater.7b02847.

Downloads

Published

29-04-2025

Issue

Section

Scientific paper