Correct determination of the hydrogen evolution reaction parameters at Ni foam electrode modified by electrodeposited Ni-Sn alloy layer


  • Jelena D. Gojgić University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia Author
  • Aleksandar M. Petričević University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia Author
  • Mila N. Krstajić Pajić University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia Author
  • Vladimir D. Jović Retired from the University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia Author



HER parameters, exchange current density, relaxation time, Ni-Sn alloy, Ni foam, 30% KOH


The example of the procedure for the correct determination of the parameters of hydrogen evolution reaction (HER), the exchange current density (jo) and relaxation time (to) for intermediate (adsorbed hydrogen, Hads) adsorption at modified porous Ni-based electrode are presented in this work. Such a procedure is applicable for the HER at all electrode materials. The value of jo was obtained from the intercept at h = 0 mV from the h vs. log (Rct-1) dependence (h - overpotential), while the value of to was obtained from the intercept at h = 0 mV from the logt vs. h dependence. It was shown that for the correct determination of jo and to, it is necessary to correct applied h for the jRs drop, by recording current density (j) for applied h and correcting it for jRs


S.Trasatti (1992) Electrolysis of Hydrogen Evolution: Progress in Cathode Activation, In: H. Gerischer, C.W. Tobias (Eds.), Advances in Electrochemical Science and Engineering, Wiley-VCH, Weinheim, p. 2-85.

B.V.Tilak, P.W.T.Lu, J.E.Colman, S.Srinivasan (1981) Electrolytic Production of Hydrogen, In: Compre¬hensive Treatise of Electrochemistry, J.O'.M. Bockris, B.E. Conway, E. Yeager, R.E. White (Eds.), Vol. 2, Plenum Press, New York and London, p. 1-97.

V.D.Jović, N.V.Krstajić, T.Rauscher (2023) Electrodeposited Ni-Based, Non-Noble Metal Cathodes for a Hydrogen Evolution Reaction in Alkaline Solutions, In: M.J. Acosta (Ed.), Advances in Energy Research, Vol. 39, Nova Science Publishers, Inc., New York, p. 97-184.

A.Lasia (2003) Hydrogen evolution reaction, In: W. Vielstich, A. Lamm, H.A. Gasteiger (Eds.), Handbook of Fuel Cells - Fundamentals, Technology and Applications, Vol. 2, John Wiley & Sons, Ltd., Chichester, p 416-440.

Noble-Metal-Free Electrocatalysts for Hydrogen Energy, Catalytic Science Series, Vol. 20, Q. Gao, L. Yang (Eds.), World Scientists, 2022.

B.E.Conway, B.V.Tilak, in: D.D. Eley, H.Pines, P.B. Weisz (Eds.) (1992) Advances in Catalysis, vol. 38, Academic Press, Inc., San Diego, California, Ch. 1.

H.Gerischer, W.Mehl, Z.Elektrochem (1955) Zum Mechanismus der kathodischen Wasserstoffab-scheidung an Quecksilber, Silber und Kupfer, Z. Physic. Chem, 59, 1049-1059.

R.D.Armstrong, M.Henderson (1972) Impedance plane display of a reaction with an adsorbed intermediate, J. Electroanal. Chem., 39, 81-90.

S.-I. Pyun, T.-H.Yang (1996) Investigation of the HER at a 10 wt. Pd-dispersed C electrode using EIS, J. Appl. Electrochem., 26, 953-958.

C.Hitz, A.Lasia (2001) Experimental study and modeling of impedance of the her on porous Ni electrodes, J. Electroanal. Chem., 50, 213-222.

A.Lasia (2002) Applications of electrochemical impedance spectroscopy to hydrogen adsorption, evolution and absorption into metals, in: B.E. Conway, R.E. White (Eds.), Modern Aspects of Electrochemistry, no. 35, Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, Ch. 1.

B.Losiewicz, A.Budniok, E.Rowinski, E.Lagiewka, A. Lasia (2004) The structure, morphology and electrochemical impedance study of the hydrogen evolution reaction on the modified nickel electrodes, Int. J. Hydrogen Energy, 29, 145-157.

L.Birry, A.Lasia (2004) Studies of the hydrogen evolution reaction on Raney nickel-molybdenum electrodes, J. Appl. Electrochem., 34, 735-749.

B.E.Castro, R.H.Milocco (2005) Identifiability of sorption and diffusion processes using EIS: Application to the hydrogen reaction, J. Electroanal. Chem., 579, 113-123.

A.Lasia (2019) Mechanism and kinetics of the hydrogen evolution reaction, Int.J.Hydrogen Energy, 44, 19484-19518.

D.A.Harrington, B.E.Conway (1987) Ac impedance of faradaic reactions involving electrosorbed intermediates - I. Kinetic theory, Electrochim. Acta, 32, 1703-1712.

L.Bai, D.A.Harrington, B.E.Conway (1987) Behavior of overpotential-deposited species in faradaic reactions - II. ac impedance measurements on H2 evolution kinetics at activated and unactivated Pt cathodes, Electrochim. Acta, 32, 1713-1731.

M.Okido, J.K.Depo, G.A.Capuano (1993) The Mechanism of Hydrogen Evolution Reaction on a Modified Raney Nickel Composite‐Coated Electrode by AC Impedance, J. Electrochem. Soc., 40, 127-133.

E.B.Castro, M.J. de Giz, E.R.Gonzalez, J.R.Vilche (1997) An electrochemical impedance study on the kinetics and mechanism of the hydrogen evolution reaction on nickel molybdenite electrodes, Electrochim. Acta, 42, 951-959.

N.V.Krstajić, S.Burojević, Lj.M.Vračar (2000) The determination of kinetics parameters of the hydrogen evolution on Pd-Ni alloys by ac impedance, Int.J.Hydrogen Energy, 25, 635-641.

D.Lin, A.Lasia (2017) Electrochemical impedance study of the kinetics of hydrogen evolution at a rough palladium electrode in acidic solution, J. Electroanal. Chem., 785, 190-195.

J.D.Gojgić, A.M.Petričević, T.Rauscher, C.I. Bernäcker, T.Weißgärber, L.Pavko, R.Vasilić, M.N. Krstajić Pajić, V.D.Jović (2023) Hydrogen evolution at Ni foam electrodes and Ni-Sn coated Ni foam electrodes, Applied Catalysis A, General, 663, 119312

C.H.Hsu, F.Mansfeld (2001) Technical Note: Concerning the Conversion of the Constant Phase Element Parameter Y0 into a Capacitance, Corr. 57, 747-748.

V.D. Jović (2022) Calculation of a pure double layer capacitance from a constant phase element in the impedance measurements, Zaštita Materijala, 63, 50-57.






Scientific paper