A review on improved physical and thermal properties of oxide nanoparticles reinforced epoxy composites

Authors

  • Avani Kumar Upadhyay Department of Mechanical Engineering, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, India; CAD Department, Tendemloop Technologies Pvt. LTd., Bangalore, Karnataka, India, Author
  • Manjeet Singh Goyat Department of Applied Science, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, India; Smart Materials, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark Author

DOI:

https://doi.org/10.62638/ZasMat1038

Abstract

Epoxy resins are well-known because of their desirable thermal and mechanical characteristics in a variety of fields, including the automotive, construction, and aerospace sectors. However, the inherent brittle nature of highly cross-linked epoxy resins generally leads to weakness in resisting the formation of cracks and their movement. The brittleness of the epoxy resins is one of the major obstacles inhibiting its use at a wider scale. Therefore, many researchers focused on reinforcement of epoxy resins by different types of nanostructures including carbon nanotubes (CNTs), organic/inorganic nanofillers to provide higher strength, without diminishing other essential thermo-physical characteristics of the nanocomposites. Most of the review articles focused on the CNT-reinforced epoxy composites and very limited review articles are available that focus on the oxide nanofiller reinforced epoxy composites. In this review article, epoxy nanocomposites reinforced with alumina (Al2O3), titania (TiO2), silica (SiO2), and zirconia (ZrO2) nanoparticles have been investigated. The influence of the oxide nanoparticles in modifying the physical and thermal properties of the epoxy nanocomposites has been presented, compared, and critically analysed to optimize the performance of epoxy nanocomposites.

References

V.K. Thakur, M.K. Thakur, R.K. Gupta (2017) Hybrid polymer composite materials: Structure and chemistry.Editor Elsevier, book, p.356

I. Erukhimovich, M.O. de la Cruz (2004) Phase equilibria and charge fractionation in polydisperse polyelectrolyte solutions, 45, 1390-1398.

L. Hsu, C. Weder, S.J. Rowan (2011) Stimuli-responsive, mechanically-adaptive polymer nanocomposites. J. Mater. Chem., 21(9), 2812-22.

https://doi.org/10.1039/C0JM02383C

J. Guo, J. Long, D. Ding, Q. Wang, Y. Shan, A. Umar, X. Zhang, B.L. Weeks, S. Wei, Z. Guo (2016) Significantly enhanced mechanical and electrical properties of epoxy nanocomposites reinforced with low loading of polyaniline nanoparticles. RSC Adv., 6(25), 21187-92.

https://doi.org/10.1039/C5RA25210E

P. Chammingkwan, K. Matsushita, T. Taniike, M. Terano (2016) Enhancement in mechanical and electrical properties of polypropylene using graphene oxide grafted with end-functionalized polypropylene. Materials (Basel)., 9(4), 240-248.

https://doi.org/10.3390/ma9040240

J. Bin Dai, H.C. Kuan, X.S. Du, S.C. Dai, J. Ma (2009) Development of a novel toughener for epoxy resins. Polym. Int., 58(7), 838-845.

https://doi.org/10.1002/pi.2604

A.K. Naskar, J.K. Keum, R.G. Boeman (2016) Polymer matrix nanocomposites for automotive structural components. Nat. Nanotechnol., 11(12), 1026-30.

https://doi.org/10.1038/nnano.2016.262

V.B. Mohan, K. Lau, D. Hui, D. Bhattacharyya (2018) Graphene-based materials and their composites: A review on production, applications and product limitations. Compos. Part B Eng., 142, 200-220.

https://doi.org/10.1016/j.compositesb.2018.01.013

G. Mittal, K.Y. Rhee, V. Mišković-Stanković, D. Hui (2018) Reinforcements in multi-scale polymer composites: Processing, properties, and applications. Compos. Part B Eng., 138,122-139.

https://doi.org/10.1016/j.compositesb.2017.11.028

P. Dittanet, R.A. Pearson (2012) Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer (Guildf)., 53(9), 1890-905.

https://doi.org/10.1016/j.polymer.2012.02.052

I. Ozsoy, A. Demirkol, A. Mimaroglu, H. Unal, Z. Demir (2015) The influence of micro- And nano-filler content on the mechanical properties of epoxy composites. Stroj. Vestnik/Journal Mech. Eng., 61(10), 601-609.

https://doi.org/10.5545/sv-jme.2015.2632

A. Jelić, M. Sekulić, M. Travica, J. Gržetić, V. Ugrinović, A.D. Marinković, A. Božić, M. Stamenović, S. Putić (2022) Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC). Polymers (Basel)., 14(6), 1255.

https://doi.org/10.3390/polym14061255

A. Jelić, A. Marinković, M. Sekulić, S. Dikić, V. Ugrinović, V. Pavlović, S. Putić (2021) Design of halloysite modification for improvement of mechanical properties of the epoxy based nanocomposites. Polym. Compos., 42(5), 2180-92.

https://doi.org/10.1002/pc.25967

Ł. Klapiszewski, J. Tomaszewska, K. Skórczewska, T. Jesionowski (2017) Preparation and characterization of eco-friendly Mg(OH)2/lignin hybrid material and its use as a functional filler for poly(vinyl chloride). Polymers (Basel)., 9(7), 258-265.

https://doi.org/10.3390/polym9070258

S. Halder, P.K. Ghosh, M.S. Goyat (2012) Influence of ultrasonic dual mode mixing on morphology and mechanical properties of ZrO2-epoxy nanocomposite. High Perform. Polym., 24(4), 331-341.

https://doi.org/10.1177/0954008312440714

P.K. Ghosh, M.S. Goyat, D. Mishra, R. Nagori (2012) Physical and Mechanical Properties of Epoxy-Nanoparticulate Composite Adhesive. Adv. Mater. Res., 585, 297-300.

https://doi.org/10.4028/www.scientific.net/AMR.585.297

S. Halder, M.S. Goyat, P.K. Ghosh (2016) Morphological, structural, and thermophysical properties of zirconium dioxide-epoxy nanocomposites. High Perform. Polym., 28(6), 697-708.

https://doi.org/10.1177/0954008315595275

A. Hooda, M.S. Goyat, R. Gupta, M. Prateek, M. Agrawal, A. Biswas (2017) Synthesis of nano-textured polystyrene/ZnO coatings with excellent transparency and superhydrophobicity. Mater. Chem. Phys., 193, 447-452.

https://doi.org/10.1016/j.matchemphys.2017.03.011

T. Prasad, S. Halder, M.S. Goyat, S.S. Dhar (2016) Morphological dissimilarities of ZnO nanoparticles and its effect on thermo-physical behavior of epoxy composites. Polym. Compos., 39(1), 135-145.

https://doi.org/10.1002/pc.23914

M.S. Goyat, S. Rana, S. Halder, P.K. Ghosh (2018) Facile fabrication of epoxy-TiO 2 nanocomposites: A critical analysis of TiO 2 impact on mechanical properties and toughening mechanisms. Ultrason. Sonochem., 40, 861-73.

https://doi.org/10.1016/j.ultsonch.2017.07.040

M.S. Goyat, P.K. Ghosh (2017) Impact of ultrasonic assisted triangular lattice like arranged dispersion of nanoparticles on physical and mechanical properties of epoxy-TiO 2 nanocomposites. Ultrason. Sonochem., 42, 141-154.

https://doi.org/10.1016/j.ultsonch.2017.11.019

M.S. Goyat, S. Ray, P.K. Ghosh (2011) Innovative application of ultrasonic mixing to produce homogeneously mixed nanoparticulate-epoxy composite of improved physical properties. Compos. Part A Appl. Sci. Manuf., 42(10), 1421-31.

https://doi.org/10.1016/j.compositesa.2011.06.006

S. Haldera, P.K. Ghosh, M.S. Goyat, S. Ray (2013) Ultrasonic dual mode mixing and its effect on tensile properties of SiO2-epoxy nanocomposite. J. Adhes. Sci. Technol., 27(2), 111-124.

https://doi.org/10.1080/01694243.2012.701510

S. Halder, T. Prasad, N.I. Khan, M.S. Goyat, S. Ram Chauhan (2017) Superior mechanical properties of poly vinyl alcohol-assisted ZnO nanoparticle reinforced epoxy composites. Mater. Chem. Phys., 192, 198-209.

https://doi.org/10.1016/j.matchemphys.2016.12.055

P.K. Ghosh, A. Pathak, M.S. Goyat, S. Halder (2012) Influence of nanoparticle weight fraction on morphology and thermal properties of epoxy/TiO2 nanocomposite. J. Reinf. Plast. Compos., 31(17), 1180-8.

https://doi.org/10.1177/0731684412455955

L.L. Zhai, G.P. Ling, Y.W. Wang (2008) Effect of nano-Al2O3 on adhesion strength of epoxy adhesive and steel. Int. J. Adhes. Adhes., 28(1-2), 23-28.

https://doi.org/10.1016/j.ijadhadh.2007.03.005

A. Omrani, L.C. Simon, A.A. Rostami (2009) The effects of alumina nanoparticle on the properties of an epoxy resin system. Mater. Chem. Phys., 114(1), 145-50.

https://doi.org/10.1016/j.matchemphys.2008.08.090

L. Zhai, G. Ling, J. Li, Y. Wang (2006) The effect of nanoparticles on the adhesion of epoxy adhesive. Mater. Lett., 60(25-26), 3031-3.

https://doi.org/10.1016/j.matlet.2006.02.038

B. Wetzel, F. Haupert, M.Q. Zhang (2003) Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol., 63(14), 2055-67.

https://doi.org/10.1016/S0266-3538(03)00115-5

B. Wetzel, P. Rosso, F. Haupert, K. Friedrich (2006) Epoxy nanocomposites-fracture and toughening mechanisms. Eng. Fract. Mech., 73(16), 2375-98.

https://doi.org/10.1016/j.engfracmech.2006.05.018

R.K. Nayak, A. Dash, B.C. Ray (2014) Effect of Epoxy Modifiers (Al2O3/SiO2/TiO2) on Mechanical Performance of epoxy/glass Fiber Hybrid Composites. Procedia Mater. Sci., 6, 1359-64.

https://doi.org/10.1016/j.mspro.2014.07.115

K. Kumar, P.K.K. Ghosh, A. Kumar (2016) Improving mechanical and thermal properties of TiO2-epoxy nanocomposite. Compos. Part B Eng., 97, 353-60.

https://doi.org/10.1016/j.compositesb.2016.04.080

A. Chatterjee, M.S. Islam (2008) Fabrication and characterization of TiO2-epoxy nanocomposite. Mater. Sci. Eng. A, 487(1-2), 574-85.

https://doi.org/10.1016/j.msea.2007.11.052

Y. Zhou, E. White, M. Hosur, S. Jeelani (2010) Effect of particle size and weight fraction on the flexural strength and failure mode of TiO2 particles reinforced epoxy. Mater. Lett., 64(7), 806-9.

https://doi.org/10.1016/j.matlet.2010.01.016

B. Bittmann, F. Haupert, A.K. Schlarb (2011) Preparation of TiO2/epoxy nanocomposites by ultrasonic dispersion and their structure property relationship. Ultrason. Sonochem., 18(1), 120-126.

https://doi.org/10.1016/j.ultsonch.2010.03.011

B. Bittmann, F. Haupert, A.K. Schlarb (2012) Preparation of TiO2epoxy nanocomposites by ultrasonic dispersion and resulting properties. J. Appl. Polym. Sci., 124(3), 1906-11.

https://doi.org/10.1002/app.34493

H.A. Al-Turaif (2010) Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin. Prog. Org. Coatings, 69(3), 241-6.

https://doi.org/10.1016/j.porgcoat.2010.05.011

I. a Al-ajaj, M.M. Abd, H.I. Jaffer, A. Materials (2013) Mechanical Properties of Micro and Nano TiO 2 / Epoxy Composites. Int. J. Mining, Metall. Mech. Eng., 1(2), 2-6.

C.B. Ng, B.J. Ash, L.S. Schadler, R.W. Siegel (2001) A study of the mechanical and permeability properties of nano-and micron-TiO2, filled epoxy composites. Adv. Compos. Lett., 10(3), 101-11.

https://doi.org/10.1177/096369350101000301

G. Xian, R. Walter, F. Haupert (2006) A synergistic effect of nano-TiO2 and graphite on the tribological performance of epoxy matrix composites. J. Appl. Polym. Sci., 102(3), 2391-400.

https://doi.org/10.1002/app.24496

P. Carballeira, F. Haupert (2010) Toughening effects of titanium dioxide nanoparticles on TiO 2/epoxy resin nanocomposites. Polym. Compos., 31(7), 1241-6.

https://doi.org/10.1002/pc.20911

C. Guan, C.L. Lü, Y.F. Liu, B. Yang (2006) Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites. J. Appl. Polym. Sci., 102(2), 1631-6.

https://doi.org/10.1002/app.23947

H. Zhang, Z. Zhang, K. Friedrich, C. Eger (2006) Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater., 54(7), 1833-42.

https://doi.org/10.1016/j.actamat.2005.12.009

A.J. Kinloch, J.H. Lee, A.C. Taylor, S. Sprenger, C. Eger, D. Egan (2003) Toughening structural adhesives via nano- and micro-phase inclusions. J. Adhes., 79(8-9), 867-73.

https://doi.org/10.1080/00218460309551

Y. Zheng, Y. Zheng, R. Ning (2003) Effects of nanoparticles SiO2 on the performance of nanocomposites. Mater. Lett., 57(19), 2940-4.

https://doi.org/10.1016/S0167-577X(02)01401-5

M.Z. Rong, M.Q. Zhang, Y.X. Zheng, H.M. Zeng, K. Friedrich (2001) Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer (Guildf)., 42(7), 3301-4.

https://doi.org/10.1016/S0032-3861(00)00741-2

R. Medina, F. Haupert, A.K. Schlarb (2008) Improvement of tensile properties and toughness of an epoxy resin by nanozirconium-dioxide reinforcement. J. Mater. Sci., 43(9), 3245-52.

https://doi.org/10.1007/s10853-008-2547-8

R. V. Kurahatti, A.O. Surendranathan, S. Srivastava, N. Singh, A. V. Ramesh Kumar, B. Suresha (2011) Role of zirconia filler on friction and dry sliding wear behaviour of bismaleimide nanocomposites. Mater. Des., 32(5), 2644-9.

https://doi.org/10.1016/j.matdes.2011.01.030

Y. Hu, G. Gu, S. Zhou, L. Wu (2011) Preparation and properties of transparent PMMA/ZrO2 nanocomposites using 2-hydroxyethyl methacrylate as a coupling agent. Polymer (Guildf)., 52(1), 122-9.

https://doi.org/10.1016/j.polymer.2010.11.020

A. Olad, M. Barati, S. Behboudi (2012) Preparation of PANI/epoxy/Zn nanocomposite using Zn nanoparticles and epoxy resin as additives and investigation of its corrosion protection behavior on iron. Prog. Org. Coatings, 74(1), 221-7.

https://doi.org/10.1016/j.porgcoat.2011.12.012

G. Das, N. Karak (2009) Epoxidized Mesua ferrea L. seed oil-based reactive diluent for BPA epoxy resin and their green nanocomposites. Prog. Org. Coatings, 66(1), 59-64.

https://doi.org/10.1016/j.porgcoat.2009.06.001

D. Wu, L. Wu, J. Wang, Y. Sun, M. Zhang (2011) Effect of epoxy resin on the thermal behaviors and viscoelastic properties of poly(phenylene sulfide). Mater. Chem. Phys., 128(1-2), 274-82.

https://doi.org/10.1016/j.matchemphys.2011.03.015

Y. Liu, D.L. Duan, S.L. Jiang, S. Li (2015) Preparation and its cavitation performance of nickel foam/epoxy/SiC co-continuous composites. Wear, 332-333, 979-87.

https://doi.org/10.1016/j.wear.2014.12.025

R. DaganI (1992) Nanostructured Materials Promise To Advance Range of Technologies. Chem. Eng. News, 70(47), 18-24.

https://doi.org/10.1021/cen-v070n047.p018

M.Z. Rong, M.Q. Zhang, Y.X. Zheng, H.M. Zeng, R. Walter, K. Friedrich (2001) Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer (Guildf)., 42(1), 167-83.

https://doi.org/10.1016/S0032-3861(00)00325-6

P.K. Ghosh, S.K. Nukala (2008) Characteristics of adhesive joints of metals using inorganic particulate composite adhesives. Trans. Indian Inst. Met., 61(4), 307-17.

https://doi.org/10.1007/s12666-008-0044-z

C. Zhang, X. Bai, X. Lian, Y. Dou, H. Liu (2011) Study on morphology and mechanical properties of PMMA-based nanocomposites containing POSS molecules or functionalized SiO2 particles. High Perform. Polym., 23(6), 468-76.

https://doi.org/10.1177/0954008311417023

R.R. Tummala, E.J. Rymaszewski, Y.C. Lee (1989) Microelectronics Packaging Handbook. J. Electron. Packag., 111(3), 241-249.

https://doi.org/10.1115/1.3226540

Q. Yao, J. Qu (2002) Interfacial versus cohesive failure on polymer-metal interfaces in electronic packaging - Effects of interface roughness. J. Electron. Packag. Trans. ASME, 124(2), 127-34.

https://doi.org/10.1115/1.1459470

F.L. Jin, X. Li, S.J. Park (2015) Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem., 29, 1-11.

https://doi.org/10.1016/j.jiec.2015.03.026

S.H. Goodman (1998) Epoxy Resins. Handbook of Thermoset Plastics, pp. 193-268.

https://doi.org/10.1016/B978-081551421-3.50009-6

J. Murphy (2001) Additives for Plastics Second Edition. Elsevier Science Ltd.

G. Viana, M. Costa, M.D. Banea, L.F.M. da Silva (2017) Behaviour of environmentally degraded epoxy adhesives as a function of temperature. J. Adhes., 93(1-2), 95-112.

https://doi.org/10.1080/00218464.2016.1179118

P. Rosso, L. Ye (2007) Epoxy/silica nanocomposites: Nanoparticle-induced cure kinetics and microstructure. Macromol. Rapid Commun., 28(1), 121-6.

https://doi.org/10.1002/marc.200600588

L. Liu, Z. Qi, X. Zhu (1999) Studies on nylon 6/clay nanocomposites by melt‐intercalation process. J. Appl. Polym. Sci., 71(7), 1133-8.

https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1133::AID-APP11>3.0.CO;2-N

Z. Wang, G. Xie, X. Wang, Z. Zhang (2006) Rheology and dispersion behavior of high-impact polystyrene/ethylene-vinyl acetate copolymer/TiO2 nanocomposites. J. Appl. Polym. Sci., 100(6), 4434-8.

https://doi.org/10.1002/app.23713

J. Bijwe, J. Indumathi, A.K. Ghosh (2002) On the abrasive wear behaviour of fabric-reinforced polyetherimide composites. Wear, 253(7-8), 768-77.

https://doi.org/10.1016/S0043-1648(02)00169-2

I. Stewart, A. Chambers, T. Gordon (2007) The cohesive mechanical properties of a toughened epoxy adhesive as a function of cure level. Int. J. Adhes. Adhes., 27(4), 277-87.

https://doi.org/10.1016/j.ijadhadh.2006.05.003

A.J. Kinloch, A.C. Taylor (2006) The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites. J. Mater. Sci., 41(11), 3271-97.

https://doi.org/10.1007/s10853-005-5472-0

C.-M. Chan, J. Wu, J.-X. Li, Y.-K. Cheung (2002) Polypropylene/calcium carbonate nanocomposites. Polymer (Guildf)., 43(10), 2981-92.

https://doi.org/10.1016/S0032-3861(02)00120-9

M. Shanthi, M. Gupta, A.E.W.E.W. Jarfors, M.J.J. Tan (2011) Synthesis, characterization and mechanical properties of nano alumina particulate reinforced magnesium based bulk metallic glass composites 528(18), 6045-50.

https://doi.org/10.1016/j.msea.2011.03.103

A. Gautam, S. Ram (2010) Preparation and thermomechanical properties of Ag-PVA nanocomposite films. Mater. Chem. Phys., 119(1-2), 266-71.

https://doi.org/10.1016/j.matchemphys.2009.08.050

P. Pötschke, A.R. Bhattacharyya, A. Janke (2004) Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon N. Y., 42(5-6), 965-9.

https://doi.org/10.1016/j.carbon.2003.12.001

M. Imanaka, Y. Takeuchi, Y. Nakamura, A. Nishimura, T. Iida (2001) Fracture toughness of spherical silica-filled epoxy adhesives. Int. J. Adhes. Adhes., 21(5), 389-96.

https://doi.org/10.1016/S0143-7496(01)00016-1

A. Mondal, S. Ram (2003) Al3+-stabilized c-ZrO2 nanoparticles at low temperature by forced hydrolysis of dispersed metal cations in water. Solid State Ionics, 160(1-2), 169-81.

https://doi.org/10.1016/S0167-2738(03)00130-9

T. Mahrholz, J. Stängle, M. Sinapius (2009) Quantitation of the reinforcement effect of silica nanoparticles in epoxy resins used in liquid composite moulding processes. Compos. Part A Appl. Sci. Manuf., 40(3), 235-43.

https://doi.org/10.1016/j.compositesa.2008.11.008

S. Singha, M.J. Thomas (2008) Reduction of permittivity in epoxy nanocomposites at low nano-filler loadings. Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP, IEEE, pp. 726-9.

https://doi.org/10.1109/CEIDP.2008.4772804

S. Zhao, L.S. Schadler, R. Duncan, H. Hillborg, T. Auletta (2008) Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy. Compos. Sci. Technol., 68(14), 2965-75.

https://doi.org/10.1016/j.compscitech.2008.01.009

S. Wu, M.D. Soucek (2000) Crosslinking of acrylic latex coatings with cycloaliphatic diepoxide. Polymer (Guildf)., 41(6), 2017-28.

https://doi.org/10.1016/S0032-3861(99)00370-5

M. Xiong, G. Gu, B. You, L. Wu (2003) Preparation and characterization of poly(styrene butylacrylate) latex/nano-ZnO nanocomposites. J. Appl. Polym. Sci., 90(7), 1923-31.

https://doi.org/10.1002/app.12869

Y. Sun, Z. Zhang, K.S. Moon, C.P. Wong (2004) Glass transition and relaxation behavior of epoxy nanocomposites. J. Polym. Sci. Part B Polym. Phys., 42(21), 3849-58.

https://doi.org/10.1002/polb.20251

J. Yin, H. Chen, Z. Li, X. Qian, J. Yin, M. Shi, G. Zhou (2003) Preparation of PS/TiO2 core-shell microspheres and TiO 2 hollow shells. J. Mater. Sci., 38(24), 4911-6.

https://doi.org/10.1023/B:JMSC.0000004413.69813.04

N. Hebestreit, J. Hofmann, U. Rammelt, W. Plieth (2003) Physical and electrochemical characterization of nanocomposites formed from polythiophene and titaniumdioxide. Electrochim. Acta, 48(13), 1779-88.

https://doi.org/10.1016/S0013-4686(02)00783-1

G. Xian, Z. Zhang, K. Friedrich (2006) Tribological properties of micro- And nanoparticles-filled poly(etherimide) composites. J. Appl. Polym. Sci., 101(3), 1678-86.

https://doi.org/10.1002/app.22578

S. Singha, M.J. Thomas (2008) Dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul., 15(1), 12-23.

https://doi.org/10.1109/T-DEI.2008.4446732

H. Zhao, R.K.Y. Li (2008) Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites. Compos. Part A Appl. Sci. Manuf., 39(4), 602-11.

https://doi.org/10.1016/j.compositesa.2007.07.006

C.H. Chen, J.Y. Jian, F.S. Yen (2009) Preparation and characterization of epoxy/γ-aluminum oxide nanocomposites. Compos. Part A Appl. Sci. Manuf., 40(4), 463-8.

https://doi.org/10.1016/j.compositesa.2009.01.010

S. Kozhukharov, G. Tsaneva, V. Kozhukharov, J. Gerwann, M. Schem, T. Schmidt, M. Veith (2008) Corrosion Protection Properties of Composite Hybrid Coatings With Involved Nanoparticles of Zirconia and Ceria. Chem. Technol., 43 SRC-, 54, 73-80.

G. Gusmano, G. Montesperelli, M. Rapone, G. Padeletti, A. Cusmà, S. Kaciulis, A. Mezzi, R. Di Maggio (2007) Zirconia primers for corrosion resistant coatings. Surf. Coatings Technol., 201(12), 5822-8.

https://doi.org/10.1016/j.surfcoat.2006.10.036

J.F. Quinson, C. Chino, A.M. De Becdelievre, C. Guizard, M. Brunel (1996) Deformation capability and protective role of zirconia coatings on stainless steel. J. Mater. Sci., 31(19), 5179-84.

https://doi.org/10.1007/BF00355922

A. Dorigato, A. Pegoretti, F. Bondioli, M. Messori (2010) Improving epoxy adhesives with zirconia nanoparticles. Compos. Interfaces, 17(9), 873-92.

https://doi.org/10.1163/092764410X539253

M.A. Kashfipour, N. Mehra, J. Zhu (2018) A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv. Compos. Hybrid Mater., 1(3), 415-39.

https://doi.org/10.1007/s42114-018-0022-9

A. Bansal, H. Yang, C. Li, K. Cho, B.C. Benicewicz, S.K. Kumar, L.S. Schadler (2005) Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat. Mater., 4(9), 693-8.

https://doi.org/10.1038/nmat1447

H. Miyagawa, L.T. Drzal (2004) Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes. Polymer (Guildf)., 45(15), 5163-70.

https://doi.org/10.1016/j.polymer.2004.05.036

G.R. Palmese (1991) The interphase in thermosetting composites:Ph.D.Thesis, Newark, Delaware: University of Delaware Dept..

M.S. Goyat, S. Rana, S. Halder, P.K. Ghosh (2018) Facile fabrication of epoxy-TiO2 nanocomposites: A critical analysis of TiO2 impact on mechanical properties and toughening mechanisms. Ultrason. Sonochem., 40(June 2017), 861-73.

https://doi.org/10.1016/j.ultsonch.2017.07.040

S.K. Singh, D. Singh, A. Kumar, A. Jain (2020) An Analysis of Mechanical and Viscoelastic Behaviour of Nano-SiO2 Dispersed Epoxy Composites. Silicon, 12(10), 2465-77.

https://doi.org/10.1007/s12633-019-00335-x

K. Kumar, P.K. Ghosh, A. Kumar, O. Singh (2021) Enhanced Thermomechanical Properties of ZrO2 Particle Reinforced Epoxy Nanocomposite. J. Mater. Eng. Perform., 30(1), 145-53.

https://doi.org/10.1007/s11665-020-05350-3

D. Dean, R. Walker, M. Theodore, E. Hampton, E. Nyairo (2005) Chemorheology and properties of epoxy/layered silicate nanocomposites. Polymer (Guildf)., 46(9), 3014-21.

https://doi.org/10.1016/j.polymer.2005.02.015

Ş. Yazman, M. Uyaner, F. Karabörk, A. Akdemir (2021) Effects of nano reinforcing/matrix interaction on chemical, thermal and mechanical properties of epoxy nanocomposites. J. Compos. Mater., 55(28), 4257-72.

https://doi.org/10.1177/00219983211037059

S. Wang, S. Yu, J. Li, S. Li (2020) Effects of functionalized nano-TiO2 on the molecular motion in epoxy resin-based nanocomposites. Materials (Basel)., 13(1), 163.

https://doi.org/10.3390/ma13010163

S. Li, H. Jiang, T. Tang, Y. Nie, Z. Zhang, Q. Zhou (2018) Improved electrochemical and mechanical performance of epoxy-based electrolytes doped with mesoporous TiO2. Mater. Chem. Phys., 205, 23-8.

https://doi.org/10.1016/j.matchemphys.2017.10.075

A. Marotta, N. Faggio, V. Ambrogi, A. Mija, G. Gentile, P. Cerruti (2021) Biobased furan-based epoxy/TiO2 nanocomposites for the preparation of coatings with improved chemical resistance. Chem. Eng.J.,406,127107.

https://doi.org/10.1016/j.cej.2020.127107

G.C. Papanicolaou, A.E. Manara, L.C. Kontaxis (2020) Experimental and prediction study of displacement-rate effects on flexural behaviour in nano and micro TiO2 particles-epoxy resin composites. Polymers (Basel)., 12(1), 22.

https://doi.org/10.3390/polym12010022

A. Kumar, K. Kumar, P.K. Ghosh, K.L. Yadav (2018) MWCNT/TiO2 hybrid nano filler toward high-performance epoxy composite. Ultrason. Sonochem., 41, 37-46.

https://doi.org/10.1016/j.ultsonch.2017.09.005

Nitesh, A. Kumar, S. Saini, K.L. Yadav, P.K. Ghosh, A. Rathi (2022) Morphology and tensile performance of MWCNT/TiO2-epoxy nanocomposite. Mater. Chem. Phys., 277, 125336.

https://doi.org/10.1016/j.matchemphys.2021.125336

M. Ozen, G. Demircan, M. Kisa, A. Acikgoz, G. Ceyhan, Y. Işıker (2022) Thermal properties of surface-modified nano-Al2O3/Kevlar fiber/epoxy composites. Mater. Chem. Phys., 278, 125689.

https://doi.org/10.1016/j.matchemphys.2021.125689

M. Liang, K.L. Wong (2017) Study of Mechanical and Thermal Performances of Epoxy Resin Filled with Micro Particles and Nanoparticles. Energy Procedia, 110, 156-61.

https://doi.org/10.1016/j.egypro.2017.03.121

J.P.B. de Souza, J.M.L. dos Reis (2015) A thermomechanical and adhesion analysis of Epoxy/Al2O3 nanocomposites. Nanomater. Nanotechnol., 5(1), 1-7.

https://doi.org/10.5772/60938

S. Kumar Singh, D. Gunwant, A. Vedrtnam, A. Kumar, A. Jain (2022) Synthesis, characterization, and modelling the behavior of in-situ ZrO2 nanoparticles dispersed epoxy nanocomposite. Eng. Fract. Mech., 263, 108300.

https://doi.org/10.1016/j.engfracmech.2022.108300

S.K. Singh, A. Kumar, A. Jain (2018) Effect of nanoparticles dispersion on viscoelastic properties of epoxy-zirconia polymer nanocomposites. IOP Conf. Ser. Mater. Sci. Eng., 18, 100591.

https://doi.org/10.1088/1757-899X/330/1/012054

J. Zheng, X. Zhang, J. Cao, R. Chen, T. Aziz, H. Fan, C. Bittencourt (2021) Behavior of epoxy resin filled with nano-SiO2 treated with a Eugenol epoxy silane. J. Appl. Polym. Sci., 138(14), 1-11.

https://doi.org/10.1002/app.50138

S.K. Singh, A. Kumar, A. Jain (2021) Mechanical and viscoelastic properties of SiO2/epoxy nanocomposites post-cured at different temperatures. Plast. Rubber Compos., 50(3), 116-26.

https://doi.org/10.1080/14658011.2020.1840203

A. Zotti, S. Zuppolini, A. Borriello, M. Zarrelli (2020) Thermal and mechanical characterization of an aeronautical graded epoxy resin loaded with hybrid nanoparticles. Nanomaterials, 10(7), 1-14.

https://doi.org/10.3390/nano10071388

S.J. Park, F.L. Jin (2004) Thermal stabilities and dynamic mechanical properties of sulfone-containing epoxy resin cured with anhydride. Polym. Degrad. Stab., 86(3), 515-20.

https://doi.org/10.1016/j.polymdegradstab.2004.06.003

W.S. Wang, H.S. Chen, Y.W. Wu, T.Y. Tsai, Y.W. Chen-Yang (2008) Properties of novel epoxy/clay nanocomposites prepared with a reactive phosphorus-containing organoclay. Polymer (Guildf)., 49(22), 4826-36.

https://doi.org/10.1016/j.polymer.2008.08.019

V. Babrauskas (2004) Plastics flammability handbook: Principles, regulations, testing, and approval,. Fire Saf. J., 39(6), 525-7.

https://doi.org/10.1016/j.firesaf.2004.02.005

S.M. Khaled, R. Sui, P.A. Charpentier, A.S. Rizkalla (2007) Synthesis of TiO2 - PMMA nanocomposite: Using methacrylic acid as a coupling agent. Langmuir, 23, 3988-95.

https://doi.org/10.1021/la062879n

B.B. Johnsen, A.J. Kinloch, R.D. Mohammed, A.C. Taylor, S. Sprenger (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer (Guildf)., 48(2), 530-41.

https://doi.org/10.1016/j.polymer.2006.11.038

B. Guo, D. Jia, C. Cai (2004) Effects of organo-montmorillonite dispersion on thermal stability of epoxy resin nanocomposites. Eur. Polym. J., 40(8), 1743-8.

https://doi.org/10.1016/j.eurpolymj.2004.03.027

J. Bian, Z.J. Wang, H.L. Lin, X. Zhou, W.Q. Xiao, X.W. Zhao (2017) Thermal and mechanical proper¬ties of polypropylene nanocomposites reinforced with nano-SiO2 functionalized graphene oxide. Compos. Part A Appl. Sci. Manuf., 97, 120-7.

https://doi.org/10.1016/j.compositesa.2017.01.002

Downloads

Published

15-03-2024

Issue

Section

Review Paper