Confrontation of linear versus nonlinear approach in Fe2B boridelayer thickness predictions


  • Yassine El Guerri Research Laboratory of Industrial Technologies, University of Tiaret, Zaâroura, Tiaret, Algeria Author
  • Bendaoud Mebarek Laboratoire de Recherche en Intelligence Artificielle et Systèmes, University of Tiaret, Zaâroura, Tiaret, Algeria Author
  • Mourad Keddam Laboratoire de Technologie des Matériaux, Faculté de Génie Mécanique et Génie des Procédés, USTHB, El-Alia, Bab-Ezzouar, Alger, Algérie Author



Multilinear regression, Linear regression, Boriding, Boride layer, Boron


Kinetic studies of boride layers focus on trying to accurately predict their thicknesses according to some variables using different approaches. In this paper, an approach that is reliant on a multilinear regression is investigated. In doing so, with an engineering perspective, temperature  and time  are used as the sole variables in predicting a boride layer thickness u. The approach uses experimental data from a boriding process performed on iron substrates of the XC38 steel. A comparison between the proposed linear model and a nonlinear one is seen afterward to scrutinize the results. That nonlinear approach is known as the diffusion model and is based on Fick’s second law, where it uses more variables than the linear approach to estimate its predictions. Ultimately, the comparison elucidated that the use of a linear regression-based model can be an accurate engineering tool to identify boride layer thicknesses, but without interpolating the results outside the scope of the studied interval.


R.A.García-León, J.Martínez-Trinidad, I.Campos-Silva (2021) Historical Review on the Boriding Process using Bibliometric Analysis, Springer, Transactions of the Indian Institute of Metals, 74, 541-557.

M.Kulka (2019) Current Trends in Boriding Techniques, Springer, Cham, Switzerland.

B.Bhushan (2001) Modern Tribology Handbook, Taylor & Francis, Boca Raton, USA.

J.L.Dossett, G.E.Totten (2013) Steel Heat Treating Fundamentals and Processes, Chapter Boriding (Boronizing), ASM International, Materials Park, Ohio, USA.

Y.G.Gogotsi, R.A.Andrievski (1999) Materials Science of Carbides, Nitrides and Borides, Springer, NATO Science Series, Saint Pétersbourg, Russia.

A.P.Tschiptschin, C.E.Pinedo (2022) Surface Hardening of Stainless Steel, Ambrish Singh, IntechOpen, London, UK.

F.Xie, X.Ye, J.Cheng, L.Sun (2013) A Study on an Energy-saving and High-efficient Pack Boriding Technology for Tool and Die Steels, Elsevier, Physics Procedia, 50, 76-81.

E.J.Mittemeijer, M.A.Somers (2014) Thermochemical Surface Engineering of Steels, Improving Materials Performance, Elsevier, Woodhead Publishing, UK.

J.R.Davis (2003) Surface Hardening of Steels: Understanding the Basics, ASM International, Materials Science, Ohio, USA. ISBN: 978-0-87170-764-2

I.Campos-Silva, M.Ortiz-Domínguez, H.Cimenoglu, R.Escobar-Galindo, M.Keddam, M.Elías-Espinosa, N.López-Perrusquia (2011) Diffu¬sion model for growth of Fe2B layer in pure iron, Taylor & Francis, Surface Engineering, 27(3), 189-195.

M.Keddam, S.M.Chentouf (2005) A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder pack boriding, Elsevier, Appl. Surf. Sci., 252(2), 393-399.

C. Martini, G. Palombarini, G. Poli, D. Prandstraller (2004) Sliding and abrasive wear behavior of boride coatings, Elsevier, Wear, 256(6), 608-613.

S.C. Singhal (1977) A hard diffusion boride coating for ferrous materials, Elsevier, Thin Solid Films, 45(2), 321-329.

R. Ramadoss, N Kumar, S. Dash, D. Arivuoli, A. K. Tyagi (2013) Wear mechanism of CrN/NbN superlattice coating sliding against various counterbodies, Elsevier, Int. J. Refract. Met. Hard Mater., 41, 547-552.

P. A. Dearnley, K. L. Dahm, H. Çimenoǧlu (2004) The corrosion-wear behaviour of thermally oxidized CP-Ti and Ti-6Al-4V, Elsevier, Wear, 256(5), 469-479.

S. Ma, J. Xing, P. Lyu, Y. Wang, G. Liu (2018) Multiphase interface structure induced erosion resistance of directional solidified Fe-B alloy in flow liquid zinc, Elsevier, Mat. Lett., 211, 281-284.

R. Kara, F. Çolak, Y. Kayali (2016) Investigation of Wear and Adhesion Behaviors of Borided Steels, Springer, Transactions of the Indian Institute of Metals, 69(6), 1169-1177.

E. Rabinowicz (1966) Friction and Wear of Materials 2nd Edition, J. Appl. Mech., 33(2), p. 479. ISBN: 978-0-471-83084-9

M. Usta, I. Ozbek, M. Ipek, C. Bindal, A. H. Ucisik (2005) The characterization of borided pure tungsten, Elsevier, Surface and Coatings Technology, 194(2-3), 330-334.

R. Carrera-Espinoza, U. Figueroa-López, J. Martínez-Trinidad, I. Campos-Silva, E. Hernández-Sánchez, A. Motallebzadeh (2016) Tribological behavior of borided AISI 1018 steel under linear reciprocating sliding conditions, Elsevier, Wear, 362-363, 1-7.

W. Fichtl (1981) Boronizing and its practical applications, Elsevier, Materials & Design, 2(6), 276-286.

S. Ipek Ayvaz, I. Aydin (2020) Effect of the Microwave Heating on Diffusion Kinetics and Mechanical Properties of Borides in AISI 316L, Springer, Transactions of the Indian Institute of Metals, 73, 2635-2644.

M. Keddam, P. Jurči (2021) Alternative Kinetic Model of Growth of Boride Layers on Steel AISI 316, Springer, Metal Science and Heat Treatment, 63, 430-436.

V. I. Dybkov, W. Lengauer, P. Gas (2006) Formation of boride layers at the Fe-25% Cr alloy-boron interface. J Mater Sci, 41, 4948-4960.

M.Keddam (2004) A kinetic model for the borided layers by the paste-boriding process, Elsevier, Applied Surface Science, 236(1-4), 451-455.

Y.El Guerri, B. Mebarek, M. Keddam (2022) Impact of the diffusion coefficient calculation on predicting Fe2B boride layer thickness, Sciendo, Koroze a Ochrana Materialu KOM - Corrosion and Material Protection Journal, 66, 25-35.

B.Mebarek, M.Keddam, M. Kulka (2021) Simulation of the incubation time for the formation of (FeB/Fe2B) bilayer on pure iron, Sciendo, Koroze a Ochrana Materialu KOM - Corrosion and Material Protection Journal, 65, 49-56.

B. Mebarek, A. Benguelloula, A. Zanoun (2018) Effect of Boride Incubation Time During the Formation of Fe2B Phase, Scielo, Materials Research 21(1), 1-7.

S. A. Bouaziz, N. Boudaoud, A. Zanoun (2009) Thermochimical boriding of a C38 steel in molten salts containing borax-SiC, EDP Sciences, Matériaux et Techniques 97(4), 253-259.

B. Mebarek, S. A. Bouaziz, A. Zanoun (2012) Simulation model to study the thermochemical boriding of stainless steel "AISI 316" (X5CrNiMo17-12-2), EDP Sciences, Matériaux et Techniques, 100(2), 167-175.

M. Keddam, S. M. Chentouf (2005) A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding, Elsevier, Applied Surface Science, 252(2), 393-399.

B. Hallemans, P. Wollants, J. R. Roos (1995) Thermodynamic assessment of the Fe-Nd-B phase diagram, Springer, Journal of Phase Equilibria, 16, 137-149.

G. K. Uyanık, N. Güler (2013) A Study on Multiple Linear Regression Analysis, Elsevier, Procedia - Social and Behavioral Sciences, 106, 234-240.

J. W. Osborne, E. Waters (2002) Four assumptions of multiple regression that researchers should always test, Practical Assessment, Research and Evaluation, 8, 1-5.

P. Roback, J. Legler (2021) Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R, CRC Press, New York, USA.

S. Chatterjee, A. S. Hadi (1986) Influential Observations, High Leverage Points, and Outliers in Linear Regression, Statist. Sci., 1(3), 379-393.

K. M. Ramachandran, C. P. Tsokos (2021) Chapter 7 - Linear regression models, Mathematical Statistics with Applications in R, Elsevier, Academic Press.






Scientific paper