Electrochemical activities of Ni-Ti alloy in artificial blood plasma with Trigonella foenum graecum seeds

Authors

  • Selvam Annamalai Department of Chemistry, Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai-600 034, Tamil Nadu, India Author
  • Santiagu John Mary Department of Chemistry, Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai-600 034, Tamil Nadu, India Author
  • Asirvatham Ajila Department of Chemistry, Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai-600 034, Tamil Nadu, India Author
  • Devadoss Delinta Department of Chemistry, Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai-600 034, Tamil Nadu, India Author
  • Vijayagopal Sribharathy Department of Chemistry, Anna Adhars College for Women, Chennai-600 040, Tamil Nadu, India Author
  • Senthamarai Kannan Muthukumaran Department of Chemistry, Ramakrishna Mission Vivekananda College, Chennai-600 004, Tamil Nadu, India Author

DOI:

https://doi.org/10.62638/ZasMat1004

Keywords:

Nickel-titanium, AFM, protective film, Nyquist plots, Bode plots

Abstract

An investigation of the electrochemical behaviour of Ni-Ti alloy when exposed to artificial blood plasma (ABP) in the presence of 0.1 and 0.5 ppm of Trigonella foenum graecum (TFG) seeds for 1, 10, 20, and 30 days. Studies on AC impedance and polarisation have shown that a protective coating forms on the metal surface while inhibiting corrosion. The protective film has formed on the Ni-Ti implant alloy surface, the linear polarization resistance increased (LPR), and the corrosion current value (Icorr) decreased. The charge transfer resistant value (Rct) and impedance value increase and the double-layer capacitance value decrease.The protective layers morphology and the elemental composition were analyzed by SEM/EDAX. The property of the protective film on the Ni-Ti alloy has been examined by atomic force microscope. The X-ray diffraction analysis has confirmed the nature of the apatite. The corrosion inhibition efficiency of Ni-Ti alloy in ABP in the presence of TFG seeds at various concentrations for different times was improved and protected.

References

M.A.Siyah, R.Moradian, I.Manouchehri (2019) Electrochemical impedance spectroscopy (EIS) study of modified SS316L using radio frequency sputtering Ti6Al4V coating in ringer solution, Anti-Corrosion Methods and Materials., 66(1), 27-33. https://doi.org/10. 1108/ ACMM-05-2018-1929.

M.Gojic, L.Vrsalovic, S.Kozuh, D.Cubela, S.Gudic (2012) Microstructure and corrosion properties Ni-Ti alloy after electrochemical testing in 0.9% NaCl solution, Zaštita materijala., 53(4),345-351. (http://idk.org.rs/wp-content/uploads/ 2013/ 12/ZM_53_4_345.pdf.)

S.A.Fadlallah, N.El-Bagoury, S.M.G.El-Rab, R.A.Ahmed, G.El-Ousamii (2014) An overview of Ni-Ti shape memory alloy: Corrosion resistance and antibacterial inhibition for dental application, J. of Alloys and Compounds., 583, 455-464. https://doi.org/ 10.1016/j.jallcom.2013.08.029.

S.A.Shabalovskaya, G.C.Rondelli, A.L.Undisz, J.W.Anderegg, T.D.Burleigh, M.E.Rettenmayr (2009) The electrochemical characteristics of native Nitinol surfaces, Biomaterials., 30(22), 3662-3671. https://doi.org/10.1016/j.biomaterials.2009.03.034.

F.Stergioudi, C.A.Vogiatzis, E.Pavlidou, S.Skolianos, N.Michailidis (2016) The corrosion resistance of porous NiTi biomedical alloy in simulated body fluids, Innovative Materials and Structures., 25(9), 095024. http://dx.doi.org/10.1088/0964-1726/25/9/095024.

T.Hu, C.Chu, Y.Xin,S.Wu, K.W.Yeung, P.K. Chu (2010) Corrosion products and mechanism on NiTi shape memory alloy in a physiological environment, Journal of Materials Research., 25(2), 350-358. https://doi.org/ 10.1557/JMR. 2010.0051.

T.Hu, Y.C. Xin, S.L.Wu, C.L.Chu, J.Lu, L.Guan, P.K.Chu (2011) Corrosion behaviour on orthopedic Ni-Ti alloy with nanocrystalline/amorphous surface, Ma¬terials Chemistry and Physics., 126(1-2), 102-107. https://doi.org/10.1016/j.matchemphys. 2010.11.061.

S.Acharya, A.Srichamroen, S.Basu, B.Ooraikul, T.Basu (2006) Improvement in the nutraceutical properties of fenugreek (Trigonella foenum-graecum L.), Songklanakarin J. Sci. Technol., 28(1), 1-9. (https://www.thaiscience.info/journals/Article/SONG/10462627.pdf.)

M.Aasim, F.S.Baloch, A.Bakhsh, M.Sameeullah, K.M.Khawar (2018) Biotechnological approaches for genetic improvement of fenugreek (Trigonella foenum-graceum L.) Biotechnological Approaches for Medicinal and Aromatic Plants Conservation, Genetic Improvement and Utilization., p.417-444. https://doi.org/10.1007/978-981-13-0535-1_19.

D.Tiran, (2003) The use of fenugreek for breastfeeding women. Complementary Therapies in Nursing and Midwifery., 3(9), 155-156. http://dx. doi.org/ 10.1016%2FS1353-6117(03) 00044-1.

E.K.Kalra (2003) Nutraceutical definition and introduction, Aaps Pharmsci., 5(3), 27-28. https://doi.org/10.1208/ps050325.

W.Kajzer, A.Krauze, W.Walke, J.Marciniak (2008) Corrosion behavior of AISI 316L steel in artificial body fluids, Journal of Achievements in Materials and manufacturing engineering., 31(2), 247-253. (https://www.researchgate.net/profile/AnitaKajzer/publication/268808675_Kajzer_Krauze_Walke_Marciniak_Journal_of_Achievements_in_Materials_and_Manufacturing_Engineering/links/54772a190cf2a961e48240bd/Kajzer-Krauze-Walke-Marciniak-Journal-of-Achievements-in-Materials-and-Manufacturing-Engineering.pdf, 01.12.2008.)

G.A.Petropoulos (2002) Fenugreek: the genus Trigonella., CRC Press.

https://doi.org/10. 4324/ 9780203217474.

F.R.García-Galvan, S.Fajardo, V.Barranco, S.Feliu (2021) Experimental apparent stern–geary coefficients for AZ31B Mg alloy in physiological body fluids for accurate corrosion rate determination, Metals,, 11(3), 391. https://doi.org/10.3390/ met11030391.

A.C.C.Mary, S.Rajendran, H.Al-Hashem, R.J.Rathish, T.Umasankareswari, J.Jeyasundari (2015) Corrosion resistance of mild steel in simulated produced water in presence of sodium potassium tartrate, Int. J. Nano Corr. Sci. Eng., 1, 42-50. (https://www.researchgate.net/profile/Susai-Rajendran/publication/272834126_Corrosion_Resistance_Of_Mild_Steel_In_Simulated_Produced_Water_In_Presence_Of_Sodium_Potassium_Tartrate/links/54f1c2650cf2f9e34eff053d/Corrosion-Resistance-Of-Mild-Steel-In-Simulated-Produced-Water-In-Presence-Of-Sodium-Potassium-Tartrate.pdf.)

V.Singh, A.N.Garg (2006) Availability of essential trace elements in Indian cereals, vegetables, and spices using INAA and the contribution of spices to daily dietary intake, Food Chemistry., 94(1),81–89. doi:10.1016/j.foodchem.2004.10.053 .

K.Srinivasan (2006) Fenugreek (Trigonella foenum-graecum) A review of health beneficial physiological effects, Food reviews international., 22(2), 203–224. https://doi.org/10. 1080/ 87559120600586315.

P.Ojha, P.Prajapati, T.B.Karki (2018) Soaking and germination effect on bioactive components of fenugreek seeds (Trigonella foenum graecum L.), International Food Research Journal., 25(2), 690-694. http://www. ifrj.upm.edu.my/.

S.John Mary, G.Puthlibai, P.Kathiravan, J.Mano Deepa, A.Selvam (2021) Electrochemical behavior of Ni-Ti (Super-elastic) alloy in the artificial saliva in the presence of Phexin, Materials Today Proceedings., pp. 36, 878–882. https://doi.org/10.1016/j.matpr. 2020. 07.022.

E.Castaneda, J.G.Gonzalez-Rodriguez, J.Colin, M.A.Neri-Flores (2010) Electrochemical behavior of Ni-Al-Fe alloys in simulated human body solution, Journal of Solid State Electrochemistry., 14, 1145-1152. https://doi.org/10.1007/s10008-009-0941-z

S.John Mary, S.Rajendran (2013) Corrosion Behaviour of SS316L in Artificial Blood Plasma in the Presence of Amoxicillin, Portugaliae Electrochimica Acta., 31(1), 33-40. doi: 10.4152/pea.201301033.

S.R.Paital, N.B.Dahotre (2009) Calcium phosphate coatings for bio-implant applications Materials performance factors and methodologies, Materials Science and Engineering: R: Reports., 66(1-3), 1-70. https://doi.org/10. 1016/ j.mser.2009.05.001.

V.A.Brigitta, C.Thangavelu, S.Rajendran (2019) Effects of tablet on orthodontic wire made of SS 316L alloy in Artificial Saliva, International J. of Research and Analytical Reviews., 6,1000-1005. (https://www.researchgate.net/profile/SusaiRajendran/publication/332303320_Effects_of_Tablet_on_Orthodontic_Wire_made_of_SS316L_Alloy_in_Artificial_Saliva/links/5cacdf00458515cd2b0d266c/Effects-of-Tablet-on-Orthodontic-Wire-made-of-SS316L-Alloy-in-Artificial-Saliva.pdf.)

A.Abdal-Hay, H.A.Fouad, B.Alshammari, K.A.Khalil (2020) Biosynthesis of bonelike apatite 2D nanoplate structures using fenugreek seed extract, Nanomaterials., 10(5), 919. https://doi.org/10.3390/nano10050919.

M.A.Hussein, M.Kumar, R.Drew, N.AI-Aqeeli (2017) Electrochemical corrosion and in vitro bioactivity of nano-grained biomedical Ti-20Nb-13Zr alloy in a simulated body fluid, Materials., 11(1), 26-35. http://dx. doi.org/10.3390/ma11010026.

R.Nagalakshmi, L.Nagarajan, R.J.Rathish, S.S.Prabha, N.Vijaya, J.Jeyasundari, S.Rajendran (2014) Corrosion resistance of SS316L in artificial urine in presence of D-glucose, Int. J. Nano. Corr. Sci. Engg., 1(1), 39-49.

(https://www.researchgate.net/profile/SusaiRajendran/publication/272743214_Corrosion_Resistance_Of_SS316l_In_Artificial_Urine_In_Presence_Of_D-Glucose/links/54ecaa6f0cf27fbfd7713d7d/Corrosion-Resistance-Of-SS316l-In-Artificial-Urine-In-Presence-Of-D-Glucose.pdf.)

Y.C.Hong, D.H.Shin, S.C.Cho, H.S.Uhm (2006) Surface transformation of carbon nanotube powder into super-hydrophobic and measurement of wettability, Chem.Phys.Lett., 427(4–6), 390-393. DOI:10.1016/j.cplett.2006.06.033.

J.C.Souza, S.L.Barbosa, E.A.Ariza, M.Henriques, W.Teughels, P.Ponthiaux, J.P.Celis, L.A. Rocha (2015) How do titanium and Ti6Al4V corrode in the fluoridated medium as found in the oral cavity? An in vitro study, Materials Science and Engineering: C., 47, 384-393. https://doi. org/10.1016/j.msec.2014.11.055.

P.Kowalski, B.Losiewicz, T.Goryczka (2015) Deposition of chitosan layers on Ni-Ti shape memory alloy, "Archives of Metallurgy and Materials".,1, 171-176. http://dx.doi.org/10.1515/amm-2015-0027.

S.Viswanathan, L.Mohan, P.Bera and C.Anandan (2016) Effect of oxygen plasma immersion ion implantation on the formation of nanostructures over Ni–Ti alloy, RSC advances., 6(78), 74493-74499. https://doi.org/10.1039/ C6RA11541A.

D.Malina, K.Biernat, A.Sobczak-Kupiec (2013) Studies on the sintering process of synthetic hydroxyapatite, Acta Biochimica Polonica., 60(4), 851-855. https://pubmed.ncbi.nlm. nih.gov/ 24432345/.

L.D.Guillen-Romero, M.T.Oropeza-Guzman, E.A.Lopez-Maldonado, A.L.Iglesias, J.A.Paz-Gonzalez, T.Ng, E.Serena-Gomez and L.J.Villarreal-Gomez (2019) Synthetic hydroxyapatite and its use in bioactive coatings, Journal of applied biomaterials & functional materials., 17(1), 2280800018817463. https://doi.org/10.1177/2280800018817463.

Downloads

Published

15-03-2024

Issue

Section

Scientific paper