EVICA R. IVANOVIĆ¹, NEBOJŠA D. NIKOLIĆ² Originalni naučni rad UDC :624.192.4

Elektrokristalizacija dendrita srebra

Morfologija elektrohemijski istaloženih dendrita srebra analizirana je tehnikom skenirajuće elektronske mikroskopije (SEM). Na osnovu morfoloških proučavanja predložena je struktura i mehanizam rasta dendrita. Dendrit srebra je dvojnikovani kristal sa {111} ravni dvojnikovanja i pravcima rasta <112>. Mehanizam rasta predstavlja kombinaciju tri procesa: a) rast ravni dvojnikovanja preko sistema uvučenih ivica, b) klizanje ravni dvojnikovanja i c) rast slojeva na završnim (111) pljosnima. **Ključne reči:** dendrit, srebro, elektrohemijsko taloženje, skenirajuća elektronska mikroskopija (SEM)

1. UVOD

Dendrit (od grčke reči dendron, što znači drvo) je kristal koji po obliku liči na drvo, sa simetričnom i hijerarhijskom strukturom. Dendritni rast je jedan od najkompleksnijih i najčešćih oblika rasta kristala u prirodi i tehnologiji i zbog toga se proučava skoro nekoliko vekova. Dendritni rast metala je predmet velikog interesovanja u oblasti nauke o materijalima, posebno u proizvodnji elektrohemijskih izvora struje (kao što su baterije) [1-4], poluprovodničkih uređaja [5, 6], štampanih ploča [7] i elektrohemijskih senzora [8-10]. Poslednje decenije, velika pažnia je posvećena dobijanju nano-dendrita, posebno srebra, zbog njihovih specifičnih električnih, optičkih [11, 12] i katalitičkih svojstava [13, 14]. Za dobijanje dendritne strukture srebra, koriste se različite metode: elektrohemijsko taloženje [15], galvanska reakcije izmene [16], hemijsko taloženje [17], sono-elektrohemijsko taloženje [18], mikrotalasno zračenje [19], hidrotermalna redukcija [11], fotoredukcija [20], itd.

U literaturi je predloženo nekoliko mehanizama rasta dendrita srebra u različitim sistemima: difuziono-ograničena agregacija (DLA) [21], orijentisani rast [22], anizotropni rast kristala [23], sekvencijalna nukleacija na specifičnim mestima [16], višestepena kristalizacija [24], itd. U elektrohemijskoj literaturi, dendritni rast se povezuje sa hrapavljenjem elektrode i Barton-Bockris-ov model dendritnog rasta [25] je najviše citirani model koji povezuje hrapavljenje elektrode i dendritni rast pri elektrohemijskom taloženju. Ova teorija uključuje uticaje površinskog napona i promene koncentracije usled hrapavljenja površine.

Međutim, struktura dendrita, pravilno grananje i definisani pravci rasta se ne mogu objasniti navede nim nespecifičnim modelima. U ovom radu, izvrše no je proučavanje morfologije dendrita srebra dobijenih elektrohemijskim taloženjem, pomoću tehnike skenirajuće elektronske mikroskopije (SEM) sa ciljem da se odredi struktura dendrita, i na osnovu toga predloži odgovarajući model rasta.

2. EKSPERIMENTALNI DEO

Elektrohemijsko taloženje izvedeno je u elektrohemijskoj ćeliji na katodi od platine, geometrijske površine 0.53 cm². Referentna i kontra elektroda su bile od srebra. Kontra elektroda je bila srebrna folija površine 0.80 dm², postavljena uz zidove ćelije. Referentna elektroda je bila srebrna žica čiji vrh je bio postavljen na rastojanju od ~0.2 cm od površine radne elektrode. Radna elektroda je postavljena u centar ćelije. Taloženje je vršeno iz rastvora elektrolita sledećeg sastava: 0.06 M AgNO₃ + 1.2 M NaNO₃ + 0.05 M HNO₃. Dvostrukodestilovana voda je korišćena za pripremu rastvora. Ukupna zapremina elektrolita je iznosila 100 ml. Taloženje je vršeno na prenapetostima od 5, 50, 100, 150 i 250 mV, na sobnoj temperaturi. Dobijeni dendriti srebra su isprani destilovanom vodom i etanolom.

Morfologija dobijenih dendrita je analizirana tehnikom skenirajuće elektronske mikroskopije (SEM), korišćenjem instrumenta JEOL T20.

3. REZULTATI I DISKUSIJA

Morfološka analiza

Razvoj morfoloških oblika sa povećanjem prenapetosti prikazan je na slici 1. Specifični poliedri nastaju na niskim prenapetostima, bliskim ravnotežnom stanju (sl. 1a). Ukoliko ivice, umesto uglova rastu brže, tada nastaju "šuplji" kristali (sl. 1b). U difuzionoj kontroli, dolazi do razvoja dendrita (sl.1c), a sa daljim povećanjem prenapetosti nastaju aglomerati dendrita (sl. 1d). Na sLici 1c, prikazana je tipična dendritna morfologija elektrohemijski istaloženog srebra. Dendriti imaju izgled razgranatih kristala, koje karakteriše rast stabla i grana duž određenih kristalografskih pravaca. Dobijeni su dvo-dimenzionalni dendriti, čije se stablo i sve grane nalaze u jednoj ravni. Oni se označavaju kao 2-dimenzionalni ili 2D [26]. Najjednostavniji dendriti

Adrese autora: Poljoprivredni fakultet, Univerzitet u Beogradu, Nemanjina 6, Beograd-Zemun, IHTM-Institut za Elektrohemiju, Univerzitet u Beogradu, Njegoševa 12, Beograd, Srbija

Primljeno za publikovanje: 01. 02. 2014.

Prihvaćeno za publikovanje: 27. 04. 2014.

imaju samo stablo i primarne grane i označavaju se kao primarni (P) dendriti. Ako se iz primarnih grana razvijaju sekundarne, dendriti se nazivaju sekundarnim (S), sa daljom generacijom grananja, dobijaju se tercijarni dendriti (T), itd.

Slika 1 - Razvoj morfoloških oblika sa povećanjem prenapetosti: a) poliedri, 5 mV (uvećanje x200); b) "šuplji" kristali, 50 mV (uvećanje x 3500), c) dendriti, 100 mV (uvećanje x500), d) aglomerati dendrita, 250 mV (uvećanje x100)

Slika 2 - Dendrit srebra sa stablom u <112> pravcu, (η = 150 mV, t = 1 min): a) grananje u <112> pravcu (uvećanje x 2000); b) grananje u <110> pravcu (uvećanje x 5000)

Slika 2a prikazuje jedan deo dendrita, na većem uvećanju. Glavno stablo dendrita je formirano slaganjem dvojnikovanih oktaedara, uglavnom u izduženoj formi koji se prostiru u pravcu <112> u

oktaedarskoj ravni (111). Od glavnog stabla, primarne i sekundarne grane, u obliku nepravilnih heksagona rastu pod uglom od 60° (sl. 2a) ili 90° (sl. 2b). Glavna osa dendrita je paralelna <112> pravcu, a isto tako su i grane pod uglom od 60°. Grane pod uglom od 90° su paralelne <110> pravcu, koji predstavlja najgušće pakovani pravac u pov-c-k rešetki srebra, dok je pravac <112> dobijen cik-cak kretanjem duž <110> pravca [27].

Mehanizam rasta

Morfološka proučavanja pokazuju da se na maloj katodnoj prenapetosti (gustina struje i brzina rasta su takođe veoma male), elektrokristalizacija odvija procesom dvodimenzionalne nukleacije, rastom sloieva, tako da je konačna forma rasta, poljedar (sl. 1a). Sa povećanjem prenapetosti (gustina struje i brzina rasta takođe rastu) konačna forma rasta je dendrit (sl. 1c). U ovom istraživanju su dobijeni dendriti, čije se stablo i sve grane nalaze u jednoj ravni, što je direktno povezano sa rastom kristala dvojnika [28]. U difuzionoj kontroli je velika verovatnoća za iniciranje granica dvojnikovanja u nukleusu i rast kristala dvojnika. Pangarov [29] je razvio teoriju za proces dvojnikovanja u pov-c-k kristalima, koja je primenljiva i na kristalizaciju iz parne faze i na elektrokristalizaciju. Naglašeno je da je stvaranje nukleusa sa granicama dvojnikovanja moguće nakon postizanja odgovarajuće prenapetosti i da njihov procenat posle toga znatno raste. Barton i Bockris [25] su uveli koncept kritične prenapetosti, smatrajući da je to osnovni faktor za početak dendritnog rasta. Popov i saradnici [15] su takođe uveli koncept kritične prenapetosti za početak dendritnog rasta u svom obimnom istraživanju dendritnog rasta na različitim metalima.

Važnost granica dvojnikovanja je u njihovoj mogućnosti da stvore uvučenu ivicu (ili žljeb), odnosno mesto dvo-dimenzionalne nukleacije koje je samoobnavljajuće. Mehanizam rasta ravni dvojnikovanja sa uvučenom ivicom - (eng. twin plane re-entrant edge, TPRE) je mehanizam koji su prvi predložili Wagner [30] i Hamilton & Seidensticker [31] da bi objasnili dvo-dimenzionalni rast kristala germanijuma. Po ovom mehanizmu, ukoliko nukleus sadrži najmanje dve paralelne ravni dvojnikovanja, brz rast kristala posledica je formiranja uvučene ivice na preseku ravni dvojnikovanja, koja predstavlja mesto sa nižom energijom za dalju nukleaciju nego na samoj ravni. Ivica se stvara u svakom novom sloju i tako deluje kao samo-obnavljajuće mesto nukleacije.

Dvojnikovani oktaedar na {111} koji sadrži dve paralelne ravni dvojnikovanja (sl. 3a), ima šest uvučenih ivica, rotiranih za 60°, postavljenih naizmenično i one predstavljaju mesta rasta kristala u šest <112> pravca. Veoma je važno da ova mesta rasta ne nestaju i da kristal može da raste neprekidno u ovim pravcima, sa malim rastom po debljini. Ne samo dve, već veliki broj paralelnih ravni dvojnikovanja može biti prisutan u kristalu, bez narušavanja ove osnovne forme. Međutim, razlika u izgledu dendrita potiče od broja granica dvojnikovanja i njihovog međusobnog odnosa. Takođe, dvojnici nastaju, nestaju ili odstupaju od ovih granica i menjaju neke detalje, ali osnovna forma je ista (sl. 3b), kao što je prikazano na slike 1c, 2a i 5a.

Slika 3 - a) Dvojnikovani oktaedar na {111}: kristal koji sadrži dve paralelne ravni dvojnikovanja, ima šest uvučenih ivica, rotiranih za 60°, postavljenih naizmenično; b) Shematski prikaz dendritne strukture: glavno stablo i grane dendrita su formirane slaganjem dvojnikovanih oktaedara pod uglom od 60°

Morfološka analiza je pokazala da su glavno stablo dendrita i grane formirane slaganjem dvojnikovanih oktaedara, uglavnom u izduženoj formi, zbog čega se pretpostavlja da dolazi do klizanja ravni dvojnikovanja preko parcijalnih dislokacija na <112> {111} sistemu klizanja (sl. 2a i 4a), što je shematski prikazano na slici 4b.

E. R. IVANOVIĆ, N. D. NIKOLIĆ

Slika 4 - a) Dendrit srebra u početnoj fazi rasta (η = 100 mV, t = 1 min), (uvećanje x 2000); b) Shematski prikaz klizanja ravni dvojnikovanja

ELEKTROKRISTALIZACIJA DENDRITA SREBRA

Slika 5 - Dendriti srebra sa jasno izraženim (111) pljosnima na glavnoj ravni dendrita ($\eta = 250 \text{ mV}$, t = 1 min); a) uvećanje x1000, b) uvećanje x5000, c) (111) pljosni izrasle iz stabla i zaklapaju ugao od ~ 90° sa glavnom ravni dendrita (uvećanje x5000

Dendriti, takođe rastu i po debljini, rastom slojeva i kao posledica toga nastaju pljosni. Serija pljosni se može videti na glavnom stablu i na granama (sl. 5a i 5b). Neke od (111) pljosni na glavnoj ravni dendrita mogu izrasti iz stabla, pa se čini kao da se dendrit grana u <111> pravcu, jer glavno stablo i primarne grane zaklapaju ugao od ~ 90° (sl. 5c).

4. ZAKLJUČAK

Izvršena je morfološka analiza elektrohemijski istaloženih dendrita srebra pomoću skenirajuće elektronske mikroskopije. Rezultati su pokazali da se dendriti srebra sastoje od glavnog stabla i primarnih, sekundarnih i tercijarnih grana, pri čemu je pravac rasta stabla <112> u oktaedarskoj ravni (111). Od glavnog stabla, primarne i sekundarne grane, rastu u <112> pravcu, pod uglom od 60°, ili u <110> pravcu, pod uglom od 90°. Predložen je mehanizam rasta koji predstavlja kombinaciju tri procesa: a) rast ravni dvojnikovanja preko sistema uvučenih ivica, b) klizanje ravni dvojnikovanja i c) rast slojeva na završnim (111) pljosnima.

Zahvalnica

Rad je podržan od strane Ministarstva prosvete, nauke i tehnološkog razvoja Republike Srbije u okviru naučno-istraživačkog projekta ON 172046.

LITERATURA

- J. F. Parker, C. N. Chervin, E. S. Nelson, D. R. Rolison, J. W. Long, (2014): Wiring zinc in three dimensions re-writes battery performance—dendritefree cycling, *Energy Environ. Sci.*, 7, 1117-1124
- [2] D. C. Bock, A. C. Marschilok, K. J. Takeuchi, E. S. Takeuchi, (2012): Batteries used to power implanttable biomedical devices, *Electrochim. Acta*, 84, 155–164
- [3] D. R. Ely, R. E. García, (2013): Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes, *J. Electrochem. Soc.*,160, A662-A668

ZAŠTITA MATERIJALA 55 (2014) broj 2

- [4] N. Schweikerta, A. Hofmannb, M. Schulzb, M. Scheuermanna, S. T. Bolesc, T. Hanemannb, H. Hahna, S. Indrisa, (2013): Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolytes: Investigation by electrochemical impedance spectroscopy, scanning electron microscopy, and in situ ⁷Li nuclear magnetic resonance spectroscopy, *J. Power Sources*, 228, 237-243
- [5] H. Jiang, K-S. Moon, Y. Li, C. P. Wong, (2006): Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites, *Chem. Mater.*, 18, 2969-2973
- [6] Y. Li, C. P. Wong, (2006): Monolayer protection for eletrochemical migration control in silver nanocomposite, *Appl. Phys. Lett.*, 89, 112112
- [7] J. Yang, J. H. Chu, Y. Yang, Y. B. Guo, X. G. Lou, H. B. Li, (2011): Preparation of silver nanoplates and application in PCB ink-jet, *Adv. Mat. Research*, 380, 129-132
- [8] X. Wen, Y.-T. Xie, M.W.C. Mak, K.Y. Cheung, X.-Y. Li, R. Renneberg, S. Yang, (2006): Dendritic nanostructures of silver: facile synthesis, structural characterizations, and sensing applications, *Langmuir*, 22, 4836-4842
- [9] S. Chen, R. Yuan, Y. Chai, F. Hu, (2013): Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review, *Microchim. Acta*, 180, 15-32
- [10] M. Jarosz, A. Brzozka, M. Jaskula, (2013): New H_2O_2 sensors based on silver nanowire arrays, *Zaštita materijala*, 3, 249-254
- [11] M. H. Rashid, T. K. Mandal, (2007): Synthesis and catalytic application of nanostructured silver dendrites, J. Phys. Chem. C, 111, 16750-16760
- [12] X. Qin, H. Wang, X. Wang, Z. Miao, Y. Fang, Q. Chen, X. Shao, (2011): Synthesis of dendritic silver nanostructures and their application in hydrogen peroxide electroreduction, *Electrochim. Acta*, 56, 3170-3174
- [13] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, S. Schultz, (2002): Shape effects in plasmon resonance of individual colloidal silver nanoparticles, *J. Chem. Phys.*, 116, 6755–6759
- [14] E. Hao, G. C. Schatz, J. T. Hupp, (2004): Synthesis and optical properties of anisotropic metal nanoparticles, *J. Fluorescence*, 14, 331-341
- [15] K. I. Popov, S. S. Djokić, B. N. Grgur, Fundamental Aspects of Electrometallurgy; Kluwer Academic/ Plenum Publishers: New York (2002)
- [16] Z. Jiang, Y. Lin, Z. Xie, (2012): Structural investigations and growth mechanism of well-defined Ag dendrites prepared by conventional redox displacement, *Mat.Chem.Phys.* 134, 762-767

ELEKTROKRISTALIZACIJA DENDRITA SREBRA

- [17] C. Vahlas, B. Caussat, P. Serp, G. N. Angelopoulos, (2006): Principles and applications of CVD powder technology, *Mat. Sci. Eng:* R: Reports, 5 (n° 1-2), 1-72
- [18] Y. Socol, O. Abramson, A. Gedanken, Y. Meshorer, L. Berenstein, A. Zaban, (2002): Suspensive electrode formation in pulsed sonoelectrochemical synthesis of silver nanoparticles, *Langmuir*, 18, 4736-4740
- [19] R. He, X. Qian, J. Yin, Z. Zhu, (2003): Formation silver dendrites under microwave irradiation, *Chem. Phys. Lett.*, 369, 454-458
- [20] S.-D. Wu, Z. Zhu, Z. Zhang, L. Zhang, (2002): Preparation of silver nanostrings and dendrites by a ultraviolet irradiation photoreduction technique at room temperature, *J. Chem. Research*, 2002, 342-343
- [21] T. A. Witten, L. M. Sander, (1981): Diffusion-limited aggregation, a kinetic critical phenomenon. *Phys. Rev. Lett.*, 47, 1400-1403
- [22] L. Lehui, K. Atsuko, K. Yasuo, T. Keiko,O. Yukihiro, (2006): Oriented attachment-based assembly of dendritic silver nanostructures at room temperature, *J. Phys. Chem. B*, 110, 23234-23241
- [23] H. P. Ding, G. Q. Hin, K. C. Chen, M. L. Zhang, Q. Y. Liu, J. C. Hao, H. G. Liu, (2010): Silver dendritic nanostructures formed at the solid/liquid interface via electroless deposition, *Colloid. Surface A*, 353, 166-171
- [24] Z. Qiang, W. Boyang, W. Peijie, D. Christoph, W. Yanting, F. Yan, (2013): Nanoparticle-based crystal growth via multistep self-assembly, *CrystEngComm.*, 15, 5114-5118
- [25] J. L. Barton, J. O' M. Bockris, (1962): The electrolytic growth of dendrites from ionic solutions, *Proc. Roy. Soc.*, (London), 268, 485-505
- [26] G. Wranglen, (1960): Dendrites and growth layers in the electrocrystallization of metals, *Electrochim. Acta*, 2, 130-144
- [27] A. M. Shams El Din, G. Wranglen, (1962): Dendrite formation and electrocrystallization of silver from molten salts, *Electrochim. Acta*, 7, 79-90
- [28] J. Smit, F. Ogburn, C. J. Bechtoldt, (1966): Multiple twin structures in electrodeposited silver dendrites, *J. Electrochem Soc.*, 115, 371-374
- [29] N. Pangarov, (1967): Twining processes in the electrocrystallization of face-centred cubic metals, *Phys. Stat. Sol.*, 20, 371-377
- [30] R. S. Wagner, (1960): On the growth of germanium dendrites, *Acta Met.*, 8, 57-60
- [31] D. R. Hamilton and R. G. Seidensticker, (1960): Propagation mechanism of germanium dendrites, *J. Appl. Phys.*, 31, 1165-1168.

ABSTRACT

ELECTROCRYSTALLIZATION OF SILVER DENDRITES

Morphology of electrodeposited silver dendrites was investigated by scanning electron microscope (SEM). On the basis of morphological analysis, the structures and mechanism of growth were proposed. Silver dendrite is twin crystal with {111} twinning plane and direction of growth <112>. Mechanism of growth represents combinations of three steps: a) growth by propagation of twin planes, b) slip of twin planes and c) layer growth on the final (111) faces.

Keywords: dendrite, silver, electrodeposition, scanning electron microscope (SEM)

Scientific paper Received for Publication: 01 .02. 2014. Accepted for Publication: 27. 04. 2014.