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A Novel 2-D mathematical modeling to determine LHP to protectthe 
industrial transient heat treatment quenched low carbon steels bar 

ABSTRACT 

2-dimensional mathematical model of axisymmetric transient industrial quenched low carbon steel 
bar, to examine the influence of process history on metallurgical and material characteristics, a 
water-cooled model based on the finite element technique was adopted. A 2-dimensional 
axisymmetric mathematical model was utilized to predict temperature history and, as a result, the 
hardness of the quenched steel bar at any node (point). The LHP (lowest hardness point) is 
evaluated. In this paper, specimen points hardness was evaluated by the transformation of 
determined characteristic cooling time for phase conversion t8/5 to hardness. The model can be 
used as a guideline to design cooling approach to attain the desired microstructure and 
mechanical properties, for example, hardness. The mathematical model was verified and validated 
by comparing its hardness results to the results of commercial finite element software. The 
comparison demonstrates that the proposed model is reliable. 

Keywords: Heat treatment; quenching; axisymmetric steel bar; finite element; 2-D mathematical 
modelling ;unsteady state heat transfer. 

 

1. INTRODUCTION 

Quenching is a type of heat treatment that is 
commonly used in industrial processes to control 
mechanical properties of steels such as hardness 

[1]. Galerkin free element method – GFrEM 

combines the advantages of the finite element 
method and meshfree method in the aspects of 
setting up shape functions and generating compu-
tational meshes through node by node [2]. The pro-
cedure entails raising the steel temperature above 
a critical value, keeping it at that temperature for a 
specified time, and then rapidly cooling it to room 

temperature in a suitable medium [3]. Galerkin’s 

method of weighted residual was applied to study 
the heat transfer and thermal stability of a conve-
ctive straight fin with temperature-dependent ther-
mal conductivity and internal heat generation [4]. 

The microstructures formed during quenching 
(ferrite, cementite,  pearlite, upper  bainite, lower 
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bainite, and martensite) are affected by the cooling 
rate as well as the chemical composition of the 
steel [5].  

The investigation is concerned with the 
development of non-power series solutions for the 
unsteady state nonlinear thermal model of a 
radiative-convective fin having temperature-variant 
thermal conductivity using Laplace transform-
Galerkin weighted residual method [6].  

Steel quenching is a multi-physics process that 
involves a complex pattern of heat transfer 
couplings. Because of the complexity, there is no 
analytical solution exists of coupled (thermal-me-
chanical-metallurgical) theory and non-linear nature 
of the problem.However, numerical solutions can 
be obtained using the finite difference method, the 
finite volume method, and the most widely used 
method - the finite element method (FEM) [7]. 

Heat transfer is a critical function in many 
technical, industrial, home, and commercial struc-
tures. As a result, the purpose of this study is to 
investigate the effects of slip velocity and variable 
fluid characteristics on Cassonbionanofluid flow 
across a stretching sheet that has been saturated 
by gyrotactic microorganisms. The suggested 
system will be converted to a computationally 
tractable form using the Galerkin method [8]. 

mailto:drmrdakmihailo@gmail.com
http://www.idk.org.rs/journal
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The heat transfer is unsteady during the 
quenching process of the steel bar because 
temperature varies with time [9]. A new numerical 
approach to solving the fractional differential 
Riccati equations numerically. The approach—
called the Mittag-Leffler–Galerkin method—
comprises the finite Mittag-Leffler function and the 
Galerkin method [10].  

In order to obtain the numerical results of 3D 
convection-diffusion-reaction problems with 
variable coefficients efficiently, The improved 
element-free Galerkin (IEFG) method instead 
elected of the traditional element-free Galerkin 
(EFG) method by using the improved moving 
leastsquares (MLS) approximation to obtain the 
shape function [11]. 

A lot of essential consciences substantial and 
synthetic experience can be described by Partial 
Differential Equation (PDE). These Galerkin 
method (GM) and Collocation method (CM) are 
used to solve some examples of nonlinear Partial 
Differential Equation (PDE). The particular times is 
used in these methods because it can influence the 
collected result from the solution to be compared in 
terms of convergence study and the accuracy of 
the numerical solution [12]. 

The work explores an error analysis of Galerkin 
finite element method (GFEM) for computing 
steady heat conduction in order to show its 
convergence and accuracy. The steady state heat 
distribution in a planar region is modeled by two-
dimensional Laplace partial differential equations. 
A simple three-node triangular finite element model 
is used and its derivation to form elemental 
stiffness matrix for unstructured and structured grid 
meshes is presented [13]. 

The aim has been to deal with numerical 
solution of two dimensional hyperbolic boundary 
value problem. By applying Galerkin method for 
solution of this problem, numerical results are 
obtained and these results are compared with 
analytical solutions [14]. 

Numerical solutions obtained by the meshless 

local Petrov-Galerkin (MLPG) method are 

presented for 2-D functionally graded solids, which 

is subjected to either mechanical or thermal loads. 

The MLPG method is a truly meshless approach, 

as it does not need any background mesh for 

integration in the weak form.  

In this MLPG analysis, the penalty method is 

used to efficientlyenforce the essential boundary 

conditions, and the test function is chosen to equal 

the weight function of the moving least squares 

approximation [15]. 

A novel weak-form block Petrov–Galerkin 
method (BPGM) for linear elastic and crack 

problems in functionally graded materials with 
bounded and unbounded problem domains. The 
main idea of this approach is to combine the 
meshless local Petrov–Galerkin method with block 
method. Once the problem domain is discretized 
into several sub-regions, named blocks, which can 
be mapped into normalized square domains. The 
weak-form Petrov–Galerkin method and polynomial 
series of interpolations are employed in each block. 
The computational efficiency is rigorously 
examined against the strong-form finite block 
method, the finite element technique and meshless 
approaches [16]. 

The improved element-free Galerkin (IEFG) 
method is proposed for solving 3D Helmholtz 
equations. The improved moving least-squares 
(IMLS) approximation is used to establish the trial 
function, and the penalty technique is used to 
enforce the essential boundary conditions. Thus, 
the final discretized equations of the IEFG method 
for 3D Helmholtz equations can be derived by 
using the corresponding Galerkin weak form. The 
influences of the node distribution, the weight 
functions, the scale parameters of the influence 
domain, and the penalty factors on the compu-
tational accuracy of the solutions are analyzed [17]. 

The heat transfer analysis in this paper will be 
conducted in three dimensions. To reduce cost and 
computer time, the three-dimensional analysis will 
be simplified to a two-dimensional axisymmetric 
analysis [7,18-22]. This is achievable because in 
axisymmetric conditions, the temperature devia-
tions is only in (R) and (Ɵ) while there is no tem-
perature variation in the (z) direction as seen on 
Figure1. 

The Galerkin weighted residual technique is 
utilized to prove the mathematical approach [23-
28]. In this research 2-dimensional will be adopted 
to determine LHP. 

2. MATHEMATICAL APPROACH 

The temperature history of the quenched 

cylindrical steel bar should be evaluated at any 

point; three-dimensional heat transfer can be 

examined using two-dimensional 

axisymmetricelements, as illustrated in Figure 1. 

Temperature distribution approximation for an 

arbitrary linear triangular element [Saeed Moavani, 

1999]: 

(e )

1 2 3T a a R a Z    (1) 

R and Z is any point inside the element itself, 

based on global body. 

The area for triangular element [Ismail Sharif 
2005]: 

https://www.sciencedirect.com/topics/engineering/essential-boundary-condition
https://www.sciencedirect.com/topics/engineering/essential-boundary-condition
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Figure 1. This image clearly represented 
axisymmetric element from the domain 

Slika 1.Predstavljen je osnosimetričan 
element iz domena 

Shape function of 2-Dimentional Axi-symmetric 
triangularelement. 

The field variable's variation over the element 
was to be represented by the shape functions. The 
shape function of the axi-symmetric triangular 
element are expressed in terms of the r and z 
coordinates typically used for axi-symmetric 
triangular elements and its coordinates as seen in 
Figur 2. 

Which are proved to produce the shape 
functions that are demonstrated below; 

 i i i i

1
S r z

2A
  

 
   
 

 (3) 

 j j j j

1
S r z

2A
  

 
   
 

 (4) 

 k k k k

1
S r z

2A
  

 
   
 

 (5) 

Where; 

i j k k jR Z R Z  
; kji ZZ 

; jKi RR 
 

kiikj ZRZR 
; ikj ZZ 

; kij RR 
 

ijjik ZRZR 
; jik ZZ 

; ijk RR 
 

 

Figure 2. The global coordinate system of a 
typicaltriangular elements 

Slika 2.Globalni koordinatni sistem tipičnih 
trouglastih elemenata 

 

Natural area coordinate 

For a triangular element, the natural area 
coordinates; ξ, η, λ are defined as shown in Figure 
3. by: 

31 2 AA A

A A A
, ,       

 (6) 

The triangular natural area coordinates are 
exactly identical to the shape functions Si, Sj, Sk 

ξ = Si, η = Sj, λ = Sk (7) 

 

Figure 3. Natural coordinates used for a 
triangularelement 

Slika 3.Prirodne koordinate koje se koriste za 
trouglasti element 

 

Derivation of the heat conduction equation in 

Axi-symmetric elements 

Figure 4 illustrates the application of energy 

conservation to a differential volume cylindrical 

section 
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Figure 4. Axi-symetric element from an Axisymetric 
body 

Slika 4.Osnosimetrični element iz Aki simetričnog 
tela 

Ein – Eout + Egenerated = Estored  (8) 

By reducing the differential volume term, the 
heat transfer-transient through the component 
during quenching can be mathematically repre-
sented; the heat conduction equation is proved and 
provided by; Eq. 9. 

r z2

1 d dT 1 d dT d dT dT
K r K K q c

r dr dr r d d dz dz dt
 

 

     
        

     

 (9) 

kz = coefficient of heat conductivity in z-

direction, W/m∙°C 

kr = coefficient of heat conductivity in r-
direction, W/m∙°C 

kθ = coefficient of heat conductivity in θ-
direction, W/m∙°C 

t =time, s 

c = medium's specific heat, J/kg∙K 

q = heat generation, W/m
3
 

T = temperature, °C 

ρ = mass density, kg/m
3
 

Formulation of the Galerkin Weighted Residual  
Method 

From the obtained equation of heat conduction, 
the Galerkin residual for the triangular element in 
an unsteady state heat transfer by integration the 
shape functions times the residual that reduces the 
residual to zero; 

 
 

 

 

2
e T

2
v

T

v

k d dT d T
R S r k q dv

r dr dr dz

dT
S c dv 0

dt


  
      

  

 
   

 

 (10) 

     
T(e )T

V
A

[S ] dV 2 S rdrdz     (11) 

Thus Eq. 10 consists of four parts as shown in 
Eq. 12; 

   

   

T T

A A

T T

A A

T T
2 k S r drdz 2 k S r drdz

r r z z

T
2 S qr drdz 2 S c r drdz

t

 

  

          
        

         

 
    

 

 (12) 

where: 

 
i

T

j

k

S

S S

S

 
 

  
 
 

 

values of shape functions are as shown in 
equation 3, 4 and 5. 

Chain rule 

The Term 1 and 2 of Eq. 12 can be re-arranged 
using the chain rule which states that; 

 fg fg gf
     (13) 

Therefore,  fg fg f g
    

Term 1 of Eq. 12 is rearranged thus; 

 
 

T

TT
ST T T

[S] r S r r
r r r r r r

         
     

         
 (14) 

Similarly, Term 2 of Eq. 12 is rearranged 

thus; 

 
 

T2
TT

2

ST T T
[S] S r r

z z z z z

     
    

      
 (15) 

Thus Eq. (12) becomes consists of six parts as 
shown in Eq.16; 

 
 

 
 

 

B
A

T

T

A A

C

T

T

A A

D

T

A

E

ST T
2 k S r drdz 2 k r drdz

r r r r

ST T
2 k S r drdz 2 k r drdz

z z z z

2 S qrdrdz

 

 



       
       

        

       
      

        

  
T

A

F

T
2 S cr drdz

t
 

 
   

 

 (16) 

Note that Eq. 14 and 15 each consists of two 
Terms, the first Terms (A and C) in Eq. 16 are the 
heat convection terms and the second Terms of 
each of the Eqs. (B and D) in Eq. 16 are the heat 
conduction terms. Considering Eqs. (B and D) 
which are the heat conduction terms, both terms 
are evaluated to obtain the conductance matrices 
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in the r and z direction respectively, therefore we 
have that; for Eq. B, 

 

 

 

 

i i i

T i i

j j j j j

k k

k k k

1
R Z

2AS
S 1 1

S R Z
r r r 2A 2A

S
1

R Z
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  

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
  

 
  

    
       

         
       

    
  

 

 (17) 

where: 

i

i j k j

k

T
T

S S S T
r r

T

 
   

       
 

 (18) 

i j k

i i j j k k

R R R
r S R S R S R

3

  
     (19) 

[Stasa, F. L. (1985) Pappus-Guldinus theorem] 

After Substituting Eq. 17, 18 and 19 in Eq. B 
and simplifying, we get 
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2
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2

6
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

 (20) 

Similarly, Eq. D in z-direction, 

 
2

i i j i k i
i j k 2

i j j j k j

2

i k j k k k

T
k R R R

T
6A

T

    

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    

   
     

   
  
    (21) 

Note in our case quenching from auste-
nitization temperature to the ambient temperature 
thus no heat generation within the element, it 
means no the thermal load due to heat generation, 
therefore Eq. E become zero; 

Thus Eq. 

   
T T

A A

E S q r drdz 2 q S r drdz    (22) 

Green’s theorem 

The Green’s theorem is used to re-write area 
integrals in terms of line integral around the 
element boundary[29-35]. This theorem is applied 
to Eq. A and Eq. C.  

   
T T

A

T T
2 k S r drdz 2 k S r cos d

r r r


   
     

   
    

 (23) 

   
T T

A

T T
2 k S r drdz 2 k S r sin d

z z z


   
     

   
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 (24) 

The combination of Eq. 23 and 24; 

   
T TT T

2 k S r cos d 2 k S r sin d
r z

 
     
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  
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 (25) 

After substituting in Eq. 25 and simplifying, 

where the conservation of energy is applied on the 

r- and z-direction 

conduction convectionq" q"   f

T
k h T T

r


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

z

T
k



 , we get; 

       
T T

f2 rh S T d 2 rh S T d
 

      

 (26 

If there is a possible convection on the 

elements edge Fig. 5 and Fig. 6, the first Terms of 

Eq. 26 contributes to the conductance matrix as 

shown;) 

Along i - j, 

   
T

S T
t t

 


 
 

 

Figure 5. Possible convection through ij-edge 

Slika 5.  og  a kon ek i a kroz i -ivicu 

 

 






















000

03

03

12

2)(

jiji

jiji

ije
RRRR

RRRR
hl

K


 (27) 
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Figure 6. Possible convection through jk-edge 

Slika     og  a kon ek i a kroz jk-ivicu 
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If there is a possible convection at the element 

edge, the second terms of Eq. 26 contribute to the 

thermal load matrix as shown; 
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The capacitance matrix which is the unsteady 
state factor is given by the fourth Term of Eq. 12 
and the sixth Term of Eq. 16, the transient 
Equation; it is derived as follows; 

 
T

A

T
2 S c r drdz

t
 

 
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S S S T
t

T

  
   

        
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Applying the Papus Guldinus theorem and 

simplifying, 

We get; 

 
 

  
 

 
     

 

  
 

G

G GG G T t T t t
K T t C F t

t





  
  

 

 (33) 

Formation element Matrices to Global Matrix 

 
 

  
 

 
     

 

  
 

G

G GG G T t T t t
K T t C F t

t





  
  

 

 

For all the elements in the domain, assemble 

the global, conductance, capacitance, and thermal 

load matrices as well as the global matrix of the 

unknown temperature i.e. the element's condu-

ctance, capacitance and thermal load matrices 

have been obtained. All finite element analyses 

need the construction of these elements. The 

global matrix will be assembled to form the assem-

blage conductance, capacitance and thermal load 

matrixes. 

Combining these components produces the 
subsequent finite element equation: 

In general: 

 
 
 

 
 

   
 

 
 GG GG G

K T C T F 
 (34) 

[k]
(G)

= [kc]
(G)

 + [kh]
(G)

 = The global matrix of 

conductance caused by conduction and if there is a 

possible convection at the elementedge (s),  

{T}
(G) 

= Unknown temperature at each node at 
any time, 

 C (G)
= Capacitance global matrix caused by the 

transient equation, 
)(G

T






 

= Rate of change of temperature with 
respect to time, 

{F}
(G)

 = {Fh}
(G)

 + {Fq}
(G)  

= Global thermal load 

matrix if there is a possible convection at the 
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M3 

M4 

M5 M1 
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R 

2 

element edge (s), or if thereisheat generation 

respectively, in our case {Fq}
(G)  

= 0 

The Euler approach 

We shall be able to determine the nodal 
temperatures as a function of the time utilizing two-
point recurrence formulae. In this work, Euler's 
approach, also known as the backward difference 
schemes (BDS), will be used to calculate the rate 
of change of temperature, as well as the 
temperature history at every point (node) on a steel 
bar. [35-41]. 

Once the derivative of temperature T with res-
pect to time t is expressed in the backward 
direction and the step time is not equal zero, we 
get that; 

 
     

 
 
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K T t C
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  
 G

F t
 (35) 

where: 

T = rate of temperature (°C/s); 

T (t) = temperature of  ts, (°C); 

T (t - Δt)= temperature of (t - Δt) s, (°C) 

Δt = step time chosen (s) and t = time (s) at 
starting time (t = 0)). 

By modifying the values of temperature rate {T) 
in the global equation of the finite element, we 
obtain that; 

 
 

  
 

 
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Finally, the matrices become; 

                
tFTCTCtK

G

i

G

i

GG

i

GG
  11  (37) 

All of the right hand side of Eq. 37 is fully 
known at time t, including the initial condition at 
time t =0. 

As a result, the temperature at each node for a 
subsequent time could be estimated given the 
temperature for the previous time. 

Once a temperature history is given, the main 
mechanical characteristics of the bar of steel, such 
as hardness and strength, may be estimated. 

3. APPLICATIONS 

Estimation the history of temperature  

The presented mathematical model has been 
applied to compute distribution of temperature with 
time in thermal analysis-transient of quenched steel 
specimen. Cylindrical shape of steel sample has 
been heated to 1000°C. After that, quenched in 
water to 32°C as ambient temperature, with water 
film coefficient of 5000 W/m

2
∙°C. History of tempe-

rature at each point of cylindrical steel specimen 
after quenched is being represented on Figures 7. 
& 8. The cylindrical specimen made from low 
carbon steels, with properties as mentioned below. 

Thermal capacity, ρc (J/m
3
∙°C) 

0 T 650  °C, 

  6103.3004.0  Tc  
725650 T °C,  

  6c 0.068T 38.3 10     

800725 T °C, 

  61055.73086.0  Tc  

800T °C, 
61055.4 c  

Thermal conductivity, k (W/m∙°C) 

9000 T °C, 48022.0  Tk  

900T °C, 2.28k  

In our study Eq. 34 becomes; 

         
  GGGGG
FTCTK  

 

And their respective equation; 
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Figure 7. MM cross section of the domain 

Slika 7. MM presek domena 

)0( t
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A mathematical model is used to attain 
distribution of temperature at any point of quen-
ched steel using boundary conditions and data 
inputs, for instance, is the transient-state tem-
perature distribution estimates of five nodes from 
the center (M1) to the surface (M5) of quenched 
specimen which were calculated as illustrated on 
Figure 7 & Figure 8. 

 

Figure 8. Temperature history of MM cross-
section((0 ≤ R ≤0 0125 m), Z = 0 05 m)  

Slika 8. Istorija temperat re    poprečnog 
preseka ((0 ≤ R ≤ 0,0125 m),Z = 0,05 m). 

Verifying mathematical models 

To validate temperature distribution results, the 
ANSYS program is utilised using the same input 
data of steel properties and boundary condition as 
in the mathematical model. Figurative representa-
tions of the temperature distribution from the 
ANSYS analysis are provided on Figs. 9.a & 9.b 

 

a  b 

Figure 9. a) distribution of temperature just before 
steel sample becomes entirely cooled and b)dis-

tribution of temperature at moment that entire steel 
specimen becomes completely cooled after 260s. 

Slika 9. a) raspodela temperature neposredno pre 
nego što se čelični  zorak potp no ohladi i 

b)raspodela temperature u trenutku kada se ceo 
čelični uzorak potpuno ohladi nakon 260s. 

 

Figure 10. ANSYS-temperature vs time graph 

Slika 10. ANSIS-temperatura u odnosu na vreme 
grafik 

On Figure 10, temperature time graph from 
ANSYS analysis is presented; 

The graphs on Figures 8 and 10 clearly 
demonstrate that the temperature history of 
quenched steel has the same patterns. Heat 
transfer is uniform throughout the steel specimen. 
Since the common cooling time, necessary for 
structural transformation for the majority of 
structural steels, is the time of cooling from 800 to 
500°C (time t8/5)[42-48]. So, there are two 
significant temperatures to consider when 
calculating the cooling time (800°C and 500°C). 
Then, essential mechanical properties including 
hardness may be calculated. According to the 
mathematical model for the 1st node with M1 on the 
centre, quenching from 1000°C to 800°C takes 
5.120 seconds, quenching from 1000°C to 500°C 
takes 10.442 seconds, while, time of cooling (tc) 
takes 5.322 seconds. 

Whereas by using ANSYS, we noticed that the 
quenching for the same node M11 were 3.932 
seconds for 1000°C to 800°C and 9.618 seconds 
for 1000°C to 500°C, then time of cooling equal to 
5.686 seconds. And it was reported that, for the 
mathematical model and ANSYS, tc = 3.7944 and 
4.762 sec respectively, for the nodes on the sur-
faces M5 and M55. It is clear from the aforemen-
tioned that both approaches strongly agreed. 

Calculation LHP 

Estimating the desired time of cooling 

To compute the time of cooling, tc, time for the 
(points) to cool from 850

o
C to 800

o
C is documented 

and subtracted by the time for the sample to cool 
until 500

o
C. 

tc=t800-t500  

We can calculate the time it took for node M1 to 
reach 800

o
C from Figure 3. 
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t800
o
C = 5.120s 

Similarly, it takes 10.442 seconds for node M1 

to reach 500
o
C  (t500

o
C = 10.442s). 

Thus, the Node M1 Cooling Time tc; 

tc = t500
o
C - t800

o
C = 10.442-5.120=5.322s 

The cooling time tc was estimated in the same 
manner for nodes M2 to M5, with the final findings 
displayed in Table 1. 

Table 1. Illustrates time of cooling tc and cooling 
rate (ROC) 

Tabela 1. Il str  e  reme hlađen a t  i brzin  
hlađen a (ROC) 

Node tc (s) ROC (°C /s) 

M1 5.322 56.368 

M2 5.218 57.494 

M3 5.082 59.028 

M4 4.790 62.636 

M5 3.794 79.064 

 

Using the Standard Jominy distance vscooling time 
curve to get the Jominy distance 

To acquire the appropriate Jominy distance, 
cooling time, tc will now be fitted into the Jominy 
distance versus cooling time curve. Jominy 
distance may also be estimated via Microsoft Excel 
using polynomial expressions with polynomial 
regression. 

The common Table [Cooling rate at each 
Jominy distance (Chandler, H., 1998)] will be 
utilised in this paper. 

Therefore, using the data [from Cooling rate at 
each Jominy distance (Chandler, H., 1998)], the 
Jominy distance of nodes M1 to M5 will be 
determined. The final findings are provided in Table 
2, where. 

The definition of ROC, (Rate of Cooling); 

c 500 C 800 C

800 C-500 C 800 C-500 C
ROC

t t t 

   
 


(°C/s) 

Table 2. Time of cooling, Rate of cooling and 
Jominy distance of nodes M1 to M5 

Tabela 2. Vreme hlađen a, Brzina hlađen a i Jomini 
rasto an e č oro a  1 do  5 

Nodes tc (s) ROC (°C /s) 
Jominy distance 

(mm) 

M1 5.3222 56.368 7.0329 

M2 5.2179 57.494 6.9429 

M3 5.0823 59.028 6.8238 

M4 4.7896 62.636 6.5579 

M5 3.7944 79.064 5.5578 

Estimate the hardness of a quenched steel 
specimen. 

The HRC could be estimated using the 
Practical date Handbook, the Timken Company 
1835 Duebex Avenue SW Canton, Ohio 44706-
2798 1-800-223, www.timken.com, which demon-
strated the relationship for this type of steel 
between J-Distance with HRC, and then HRC can 
be evaluated as previously explained. The final 
findings represented on Figure 11 &Table 3. 

Table 3. Time of cooling, Rate of cooling, Jominy 
distance and HRC of nodes M1-M5, water-
cooled by MM 

Tabela 3. Vreme hlađen a, Brzina hlađen a, Jomini 
rasto an e i HRC č orova M1 - M5, vodeno 
hlađeni    

Nodes tc (s) 
ROC 

(°C /s) 

Jominy-
distance 

(mm) 

Hardness 
(HRC) 

M1 5.3222 56.368 7.0329 25.485 

M2 5.2179 57.494 6.9429 25.821 

M3 5.0823 59.028 6.8238 26.274 

M4 4.7896 62.636 6.5579 27.313 

M5 3.7944 79.064 5.5578 31.346 

 

Figure 11. Distribution of hardness along the MM 
cross section at Z = 0.05m for nodes M1 to M5 from 
the centre to surface by developed mathematical 

model 

Slika 11. Raspodela t rdo e d      poprečnog 
preseka na Z = 0,05m za č oro e  1 do  5 od 
 entra do po ršine raz i enim matematičkim 

modelom 

Verification of mathematical models 

The same procedure and steps taken to 
determine the hardness at each point even LHP of 
the quenched industrial steel bars by developed 
mathematical model as explained above, will be 
applied here by using ANSYS SOFTWARE 
analysis, from temperature-time graph by the 
ANSYS analysis which seen on Fig. 10, time of 

http://www.timken.com/
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cooling, rate of cooling, Jominy distance then LHP 
can be determined, the final results illustrated on 
Table 4 and Figure 12. 

Table 4. Time of cooling, Jominy distance and HRC 
for nodes M11 to M55, water cooled using 
ANSYS 

Tabela 4. Vreme hlađen a, Jomini  dal enost i HRC 
za č oro e  11 do  55,  odeno hlađen e 
pomo   A SIS-a 

Nodes Cooling time, J-distance (mm) HRC 

M11 5.696 7.352 24.34 

M22 5.689 7.340 24.37 

M33 5.686 7.327 24.42 

M44 5.525 6.937 25.83 

M55 4.762 6.53 27.4 

 

 

Figure 12. According to ANSYS, the distribution of 
hardness along the MM cross section at Z = 0.05m 

for nodes M1 to M5 from the centre to surface 

Slika 12.  rema A SIS- , raspodela t rdo e d   
   poprečnog preseka na Z = 0,05m za č oro e 

M1 do M5 od centra do po ršine 

 

Fig. 13. The HRC comparison between the MM 
results and ANSYS 

Slika 13  HRC poređen e izmeđ     rez ltata i 
ANSIS-a 

Hardness comparison 
 

The comparison of HRC between the 

mathematical model results for the nodes M1-M5 

and ANSYS SOFTWARE results for the nodes M11-

M55 for the same quenched steel specimen shown 

below on Figure 13. 

4. CONCLUSIONS 

A steel quenching mathematical model has 

been constructed to determine the distribution of 

temperature thus cooling times, cooling rate, 

Jominy distance, and lastly the hardness of the 

quenched industrial steel bar at any position (point) 

even LHP in a cylindrical shape specimen. The 

finite element Galerkin residual approach is used to 

build the model. The numerical simulation of 

quenching consisted of numerical simulation of 

temperature transient field of cooling process. By 

comparing hardness findings with ANSYS software 

simulations, this mathematical model was 

examined and validated. According to the 

mathematical model and ANSYS findings, the 

nodes on the surface [M5 and M55] cool quicker 

than the nodes at half the length at the centre [M1 

and M11] because tCm5< tCm1 and tCm55< tCm11, This 

means that the mechanical properties, such as 

hardness, will differ, with the hardness on the 

surface nodes [M5 and M55] being greater than the 

hardness on the centre nodes [M1 and M5] and this 

is which we found in our results by developed 

mathematical model as illustrated on Table 3, Fig. 

11 and also by ANSYS Table 4, Figure12, where 

the hardness on the surface at the nodes [M5 and 

M55] equals 31.3 and 27.4 respectively, whereas 

the hardness at mid the length in the centre [M1 

and M5] equals 25.485 and 24.34 respectively. 

The results indicated that the node at the 
surface, such as M5 and M55, will be the 1st to 
completely cool after quenching because it is in 
contact with the cooling medium, followed by the 
other nodes on the radial axis to the centre, 
respectively. The final point will completely cool 
after quenching will be at mid the length in the 
centre, like in our study with M1 and M11. As a 
result, LHP will be half the length of the quenched 
industrial steel bar at its centre. It will be more 
necessary to understand LHP once the radius of 
the quenched steel specimen is high because LHP 
will be low, that is, lower than the hardness on the 
surface, implying that increasing the radius of the 
bar is inversely proportional to LHP. 

It is clear that the developed mathematical 
model has been verified and validated by 
comparing its temperature simulation and hardness 
findings withcommercial finite element program, 
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ANSYS simulations. The comparison shows that 
the proposed model is reliable. 

Acknowledgement 

The authors gratefully acknowledge the Bright 
Star University, El-Brega - Libya and University of 
Tobruk, Libya for supporting this Manuscript. 

5. REFERENCE 

[1] R.G.Rahel, A.S.Elmaryami, M.A.Ahmida, A.A.Haj  
(2022) Computer Simulation to Determine LHP of 4 
Different Types of Transient Industrial Quenched 
Molybdenum Steel Bars. European Journal of 
Engineering and Technology Research. 7(6), 51–
55. https://doi.org/10.24018/ejeng.2022.7.6.2873. 

[2] X.Bing, G.Xiao-Wei, J.Wei-Wu, C.Miao, L.Jun 
(2022) Galerkin free element method and its 
application in Fracture Mechanics, Engineering 
Fracture Mechanics, 218, 106575. 

[3] A.S.Elmaryami, B.Omar (2012) Developing 1-
dimensional transient heat transfer axi-symmetric 
MM to predict the hardness, determination LHP and 
to study the effect of radius on E-LHP of industrial 
quenched steel bar. Heat Transfer Phenomena and 
Applications, p.153-182. 

[4] G.Oguntala, G.Sobamowo (2016) Galerkin’s 
Method of Weighted Residual for a Convective 
Straight Fin with Temperature-Dependent 
Conductivity and Internal Heat Generation. 
International Journal of Engineering and 
Technology (IJET), 6(12), 432-442. 

[5] A.S.Elmaryami (2021) Unsteady state computer 
simulation of 2 chromium steel at 925°C as 
austenitizing temperature to determine the lowest 
hardness point (LHP). Journal of Metallurgical & 
Materials Engineering, 18(2), 79-91. 

[6] G.M.Sobamowo, A.A.Yinusa, Z.O.Dere, R.O. 
Saheed, R.O.O.Gbadamosi (2022) Unsteady state 
heat transfer analysis of a convective-radiative 
rectangular fin using Laplace Transform-Galerkin 
weighted residual method, Journal of Engineering 
and Thermal Sciences, 2(2), 84–99, 
https://doi.org/10.21595/jets.2022.22807 

[7] A.S.Elmaryami, B.Omar (2012) Developing1D MM 
of axisymmetric transient quenched chromium steel 
to determine LHP. Journal of Metallurgy, 9, 
ID 539823. 

[8] M.M.Khader, M.M.Babatin, Ah.M.Megahed, A.Eid 
(2022) Implementing the Galerkin Method 
Associated with the Shifted Vieta-Lucas Poly-
nomials for Studying Numerically the Bionanofluid 
Flow Which Is Saturated by Gyrotactic Micro-
organisms over a Slippery Stretching Sheet,Journal 
of Mathematics, 2022, ID 5236196, https:// 
doi.org/10.1155/2022/5236196 

[9] R.K.Quenching (2001) Tempering of Welded Steel 
Tubular.[Internet] Retrieved from:https://www. 
thefabricator.com/thefabricator/article/tubepipefabric
ati n/quenching-and-tempering-of-welded-carbon-
steel-tubulars. 

[10] L.Sadek, A.S.Bataineh, H.T.Alaoui, I.Hashim (2023) 
The Novel Mittag-Leffler–Galerkin Method: 

Application to a Riccati Differential Equation of 
Fractional Order. Fractal and Fractional, 7(4),302-
311. https://doi.org/10.3390/fractalfract7040302 

[11] H.Cheng, Z.Xing, Y.Liu (2023) The Improved 
Element-Free Galerkin Method for 3D Steady 
Convection-Diffusion-Reaction Problems with 
Variable Coefficients. Mathematics, 11, ID 770. 
https:// doi.org/10.3390/math11030770 

[12] A. Ab Aziz et al. 2019) Comparative Study of 
Collocation Method and Galerkin Method for Solving 
Nonlinear Partial Differential Equation, International 
Journal of Advanced Trends in Computer Science 
and Engineering, 8(1.5), 1 – 4. 

[13] S.M.Afzal Hoq, E.Sulaeman, A.Okhunov (2016) 
Error Analysis of Heat Conduction Partial 
Differential Equations using Galerkin’s Finite 
Element Method, Indian Journal of Science and 
Technology, 9(36), 1-6, 10.17485/ijst/2016/v9i36/ 
102158,  

[14] S.Ġ.Araz, H.D.Galerkin (2018)Method for Numerical 
Solution of Two Dimensional Hyperbolic Boundary 
Value Problem with Dirichlet Conditions, 
Araz&Durur/Kırklareli University Journal of 
Engineering and Science, 4(1), 1-11. 

[15] H.K.Ching, S.C.Yen (2005) Meshless local Petrov-
Galerkin analysis for 2D functionally graded elastic 
solids under mechanical and thermal loads, 
Composites Part B: Engineering, 36(3), 223-240. 

[16] Y.Li, J.Li, P.H.Wen (2019) Finite and infinite block 
Petrov–Galerkin method for cracks in functionally 
graded materials, Applied Mathematical Modelling, 
68, 306-326 

[17] Ch.Heng, M.Peng (2022) The Improved Element-
Free Galerkin Method for 3D Helmholtz 
Equations. Mathematics, 10(1), 14-22.  

[18] A.Elmaryami, H.M.Khalid, A.Alamaria, O.Alashebe, 
S.Ali, A.Salem, R.Khaled (2021) Determination the 
Corrosion Rate of Carbon Steel (0.4%C) Due to 
Thermal Cycling, Oil Cooled. Tecnica Italiana-Italian 
Journal of Engineering Science, 65(1), 74–
78.https://doi.org/10.18280/ti-ijes.650111. 

[19] A.Elmaryami, H.M.Khalid, A.M.Abdulssalam, 
A.A.Abdulssalam, M.M.Alssafi, A.S.Abdullateef, 
Z.A.Mohamed (2021) Design of a Simple Model of 
S. P. P. to Study the Effect of Increasing the Boiler 
Pressure on the Efficiency of the Model. 
Engineering &Amp; Technology Review. 2(1), 1–7. 
https://doi.org/10.47285/etr.v2i1.60. 

[20] A.S.Elmaryami, B.Omar (2020) A Novel (1-D) 
Mathematical Modeling toDetermine (E-LHP) of 
Industrial Transient Heat Transfer 
QuenchedChromium Steel 5147H, Sea Water 
Cooled. Tecnica Italiana-ItalianJournal of 
Engineering Science.  64(2-4), 251-258. 

[21] K.G.Budinski (1992) Engineering Material: 
Properties and Selection. 4th ed.Prentice Hall 
International. p.285-309. 

[22] A.S.Elmaryami, A.S.Salem, S.S.Ali, H.O.Mokhtar, 
R.A.Khaled (2020) Corrosion rate calculation of 
carbon steel (0.4% C) after subjected tothermal 
cycling, sea water cooled. Journal of Multidisci-
plinaryEngineering Science and Technology,  1(1), 
28-34. 



A. S. A. Elmaryami,A. A. E. Mohamed A Novel 2-D mathematical modeling to determine LHP to ... 

ZASTITA MATERIJALA 64 (2023) broj 3 338 

[23] S.Moaveni (2011)  Finite element analysis theory 
and application with ANSYS, 3/e. Pearson 
Education India. 

[24] A.S.Elmaryami, Ab.Sousi, W.Saleh, Sh.El-Mabrouk, 
Ab.El-Mawla, M.Elshayb (2019)   Maximum 
Allowable ThermalStresses Calculation of Water 
Tube Boiler during Operation.International Journal 
of Research-Granthaalayah,  7(7), 191-199. 

[25] A.S.Elmaryami, B.Omar (2011)   Developing 1-D 
mm of axisymmetrictransient quenched 
molybdenum steel AISI-SAE 4037H to 
determinelowest hardness point. Journal of 
Metallurgy and Materials Science, 53(3), 289-303. 

[26] J.Fuhrmann, D.Hömberg (1999) Numerical 
simulation of the surfacehardening of steel. 
International Journal of Numerical Methods forHeat 
& Fluid Flow.,  9(6), 705-724. 

[27] A.S.Elmaryami, B.Omar, F.A.Ali, S.A.Mohammad, 
A.K.Ahmad, B.E.Wael, A.A.Moftaah (2015)  Study 
of LHP and Effect of Radius in Heat Treated steel 
1045 Bar by 1-D FEM Modeling. International 
Journal of Engineering and Applied Sciences,  7(5),  
50-58. 

[28] A.S.Elmaryami, B.Omar (2013) Transient Computer 
Simulation of Industrial Quenched Steel Bar to 
Determine the Lowest Hardness Point of 
Molybdenum and Boron Steel at 850 C as 
Austenitizing Temperature Quenched in Different 
Medium. International Journal of Materials Science,  
8(1), 13-28. 

[29] H.Chandler (1999) Hardness testing. ASM 
international.  

[30] A.S.Elmaryami, A.Alsoussi, M.Gomaa, E.Abd-Allah 
(2017) Determination the cooling time, rate of 
cooling, jominy distance andthe hardness during 
heat transfer of quenched steel bar. Journal 
ofScience-Garyounis University, 38(5), 1-11. 

[31] A.S.Elmaryami, B.Omar (2013) Modeling the effect 
of radius on temperaturehistory of transient 
quenched boron steel. Acta Metallurgica 
Slovaca,19(2), 105-111. 

[32] S.Moaveni(2003) Finite Element Analysis. A Brief 
History of the FiniteElement Method and ANSYS. 6-
8, Pearson Education, Inc. 

[33] A.S.Elmaryami, B.Omar (2013)  Effect of radius on 
temperature history oftransient industrial quenched 
chromium Steel-8650H by developing 1- D MM. 
Applied Mathematical Sciences,  7(10), 471-486. 

[34] R.Rahel, A.S.A.Elmaryami, M.A.Ahmid, A.A.Ahmed 
(2022) Computer simulation to determine LHP of 4 
different types of transient industrial quenched 
molybdenum steel Bars, European Journal of 
Engineering and Technology Research, 7(6), 51-55. 

[35] S.A.Abdlmanam, A.Elmaryami, M.Elshayeb, 
B.Omar, P.Basu, S.B.Hasan (2013)  Development 
of a numerical model of quenching of steel bars for 
determining cooling curves. Metal Science and Heat 
Treatment,  55(3), 216-219. 

[36] B.Omar, A.S.Elmaryami (2013) Developing 1-D MM 
of transient industrialquenched chromium steel-
5147H to study the effect of radius ontemperature 
history. Advanced Materials Research. 711, 115-
127. 

[37] A.S.Elmaryami (2007)  Effect of Thermal Cycling on 
the Corrosion andMicrostructure of Plain Carbon 
Steels. Materials science & technology conference 
and exhibition: MS&T'07.  6, 3771-3784. 

[38] A.S.Elmaryami, B.Omar (2012)  Modeling LHP in 
carbon steel-1045 during quenching. Journal of 
Mathematical Theory and Modeling, 2(12), 35-47. 

[39] A.S.Elmaryami, B.Omar (2012)  Determination LHP 
of axisymmetric transient Molybdenum steel-4037H 
quenched in seawater by developing 1-d 
mathematical model. Metallurgical and Materials 
Engineering, 18(3), 203-222. 

[40] A.S.Elmaryami, B.Omar (2012) Modeling the lowest 
hardness point in a steel bar during quenching. 
Materials Performance and Characterization, 1(1), 
1-15. 

[41] M.A.Ahmida, A.S.Elmaryami (2022)  Investigation of 
Using Physical Optical Reflectivity Probes in 
Evaluating and Monitoring Powder Mixtures of 
Sugar and Slag. Instrumentation Mesures, 
Métrologies,  21(2), 43-48. 

[42] A.S.Elmaryami, B.Omar (2011) The lowest 
hardness point calculation bytransient computer 
simulation of industrial steel bar quenched in oil 
atdifferent austenitizing temperatures. in 2011 
International Conferenceon Management and 
Service Science. 1, 1-6. doi.10.1109/ICMSS. 
2011.5999335 

[43] S.A.Abdlmanam, A.Elmaryami, S.B.Hasan, B.Omar, 
M. Elsayebl (2009) Unsteady state hardness 
prediction of industrial quenched steel bar [one and 
two dimensional]”. Materials Science and Techno-
logy Conference and Exhibition 2009, MS&T'09. 
Pittsburgh, PA; USA;  3, 1514-1520. Scopus.  

[44] A.S.Elmaryami (2008) Effect of thermal cycling on 
hardness of plain carbonsteels. Materials Science 
and Technology Conference and Exhibition, 
MS&T'08. Pittsburgh, PA; United States. 1(3), 1502-
1514. 

[45] A.S.Elmaryami, B.Omar (2011)  Effect of 
Austenitizing Temperatures onHardness of Two 
Chromium Steel Quenched in Sea Water by 
Unsteady State Computer Simulation. Materials 
Science & Technology[MS&T’11] Conference & 
Exhibition; Columbus, Ohio,USA. 

[46] B.Omar, M.Elshayeb, A.S.Elmaryami (2009) The 
Microstructures andCorrosion of Carbon Steel after 
Subjected to Heat Treatment thenThermal Cycling, 
Water Cooled. 5th European Metallurgical 
Conference. 1(4), 1492- 1495. 

[47] S.A.Abdlmanam, S.B.Hasan, O.Badrul, M.Elsahbi 
(2009) Unsteady state thermal behavior of industrial 
quenched steel bar”. 18 th World IMACS Congress 
and International Congress on Modelling and 
Simulation: Interfacing Modelling and Simulation 
with Mathematical and Computational Sciences, 
MODSIM09; Cairns, QLD; Australia; p. 1699-1705. 

[48] A.S.Elmaryami, B.Omar (2011)  Projjal Basu and 
Suleman Bin Haji Hasan “Unsteady State Computer 
Simulation of 2 Chromium Steel at 850°C as Aus-
tenitizing Temperature Quenched in Different 
Medium”. Proceedings of the ASME 2011 Inter-
national Manufacturing Science and Engineering 
Conference, MSEC2011, Corvallis, Oregon, USA. 

http://www.scopus.com/authid/detail.url?authorId=14619229300&amp;eid=2-s2.0-78049428310
http://www.scopus.com/authid/detail.url?authorId=36630882700&amp;eid=2-s2.0-78049428310
http://www.scopus.com/authid/detail.url?authorId=12774261600&amp;eid=2-s2.0-78049428310
http://www.scopus.com/authid/detail.url?authorId=14619229300&amp;eid=2-s2.0-78049428310


A. S. A. Elmaryami,A. A. E. Mohamed A Novel 2-D mathematical modeling to determine LHP to ... 

ZASTITA MATERIJALA 64 (2023) broj 3 339 

 

IZVOD 

NOVO 2-D MATEMATIČKO MODELIRANJE ZA ODREĐIVANJE LHP ZA 
ZAŠTITU INDUSTRIJSKOG PROLAZNOG TOPLOTNOG TRETMANA KALJENI 
NISKOUGLJENIČNI ČELICI BAR 

2-dimenzionalni matematički model oso ine simetrične tranzi entne ind stri ske šipke od 
nisko gl eničnog čelika, da bi se ispitao  ti a  istori e pro esa na metal rške i karakteristike 
materi ala,  s o en  e  odeno hlađeni model zasno an na tehni i konačnih elemenata  
Dvodimenzionalni osnosimetrični matematički model  e koriš en za pred iđan e istori e 
temperat re i, kao rez ltat, t rdo e kal ene čelične šipke   bilo kom č or  (tački) O en   e se  H  
(na ni a tačka t rdo e)    o om rad , t rdo a tačaka  zorka  e pro en ena trans orma i om 
ut rđenog karakterističnog  remena hlađen a za  azn  kon erzi   t /5   t rdo     odel se mo e 
koristiti kao smerni a za diza niran e prist pa hlađen   da bi se postigla  el ena mikrostr kt ra i 
mehanička s o st a, na primer, t rdo a   atematički model  e  eri iko an i  alidiran 
 poređi an em n ego ih rez ltata t rdo e sa rez ltatima komer i alnog so t era konačnih 
elemenata   oređen e pokaz  e da  e predlo eni model po zdan  

Ključne reči: toplotna obrada, gašen e, ososimetrična čelična šipka, konačni elementi, 2-D 
matematičko modeliranje, prenos toplote u nestabilnom stanju. 
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