A. S. A. Elmaryami,A. A. E. Mohamed

A Novel 2-D mathematical modeling to determine LHP to ...

Abdimanam S. A. Elmaryami'*, Amal A. E. Mohamed?

The Bright Star University [BSU], El-Brega, Libya,
®University of Tobruk, Tobruk, Libya

Scientificpaper
ISSN 0351-9465, E-ISSN 2466-2585
https://doi.org/10.5937/zasmat2303327E

Zastita Materijala 64 (3)
327 - 339 (2023)

A Novel 2-D mathematical modeling to determine LHP to protectthe
industrial transient heat treatment quenched low carbon steels bar

ABSTRACT

2-dimensional mathematical model of axisymmetric transient industrial quenched low carbon steel
bar, to examine the influence of process history on metallurgical and material characteristics, a
water-cooled model based on the finite element technique was adopted. A 2-dimensional
axisymmetric mathematical model was utilized to predict temperature history and, as a result, the
hardness of the quenched steel bar at any node (point). The LHP (lowest hardness point) is
evaluated. In this paper, specimen points hardness was evaluated by the transformation of
determined characteristic cooling time for phase conversion tgs to hardness. The model can be
used as a guideline to design cooling approach to attain the desired microstructure and
mechanical properties, for example, hardness. The mathematical model was verified and validated
by comparing its hardness results to the results of commercial finite element software. The
comparison demonstrates that the proposed model is reliable.

Keywords: Heat treatment; quenching; axisymmetric steel bar; finite element; 2-D mathematical

modelling ;unsteady state heat transfer.

1. INTRODUCTION

Quenching is a type of heat treatment that is
commonly used in industrial processes to control
mechanical properties of steels such as hardness
[1]. Galerkin free element method — GFrEM
combines the advantages of the finite element
method and meshfree method in the aspects of
setting up shape functions and generating compu-
tational meshes through node by node [2]. The pro-
cedure entails raising the steel temperature above
a critical value, keeping it at that temperature for a
specified time, and then rapidly cooling it to room
temperature in a suitable medium [3]. Galerkin’s
method of weighted residual was applied to study
the heat transfer and thermal stability of a conve-
ctive straight fin with temperature-dependent ther-
mal conductivity and internal heat generation [4].

The microstructures formed during quenching
(ferrite, cementite, pearlite, upper bainite, lower
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bainite, and martensite) are affected by the cooling
rate as well as the chemical composition of the
steel [5].

The investigation is concerned with the
development of non-power series solutions for the
unsteady state nonlinear thermal model of a
radiative-convective fin having temperature-variant
thermal conductivity using Laplace transform-
Galerkin weighted residual method [6].

Steel quenching is a multi-physics process that
involves a complex pattern of heat transfer
couplings. Because of the complexity, there is no
analytical solution exists of coupled (thermal-me-
chanical-metallurgical) theory and non-linear nature
of the problem.However, numerical solutions can
be obtained using the finite difference method, the
finite volume method, and the most widely used
method - the finite element method (FEM) [7].

Heat transfer is a critical function in many
technical, industrial, home, and commercial struc-
tures. As a result, the purpose of this study is to
investigate the effects of slip velocity and variable
fluid characteristics on Cassonbionanofluid flow
across a stretching sheet that has been saturated
by gyrotactic microorganisms. The suggested
system will be converted to a computationally
tractable form using the Galerkin method [8].
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The heat transfer is unsteady during the
guenching process of the steel bar because
temperature varies with time [9]. A new numerical
approach to solving the fractional differential
Riccati equations numerically. The approach—
called the Mittag-Leffler—Galerkin method—
comprises the finite Mittag-Leffler function and the
Galerkin method [10].

In order to obtain the numerical results of 3D

convection-diffusion-reaction problems with
variable coefficients efficiently, The improved
element-free Galerkin (IEFG) method instead

elected of the traditional element-free Galerkin
(EFG) method by using the improved moving
leastsquares (MLS) approximation to obtain the
shape function [11].

A lot of essential consciences substantial and
synthetic experience can be described by Partial
Differential Equation (PDE). These Galerkin
method (GM) and Collocation method (CM) are
used to solve some examples of nonlinear Partial
Differential Equation (PDE). The particular times is
used in these methods because it can influence the
collected result from the solution to be compared in
terms of convergence study and the accuracy of
the numerical solution [12].

The work explores an error analysis of Galerkin
finite element method (GFEM) for computing
steady heat conduction in order to show its
convergence and accuracy. The steady state heat
distribution in a planar region is modeled by two-
dimensional Laplace partial differential equations.
A simple three-node triangular finite element model
is used and its derivation to form elemental
stiffness matrix for unstructured and structured grid
meshes is presented [13].

The aim has been to deal with numerical
solution of two dimensional hyperbolic boundary
value problem. By applying Galerkin method for
solution of this problem, numerical results are
obtained and these results are compared with
analytical solutions [14].

Numerical solutions obtained by the meshless
local Petrov-Galerkin (MLPG) method are
presented for 2-D functionally graded solids, which
is subjected to either mechanical or thermal loads.
The MLPG method is a truly meshless approach,
as it does not need any background mesh for
integration in the weak form.

In this MLPG analysis, the penalty method is
used to efficientlyenforce the essential boundary
conditions, and the test function is chosen to equal
the weight function of the moving least squares
approximation [15].

A novel weak-form block Petrov—Galerkin
method (BPGM) for linear elastic and crack
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problems in functionally graded materials with
bounded and unbounded problem domains. The
main idea of this approach is to combine the
meshless local Petrov—Galerkin method with block
method. Once the problem domain is discretized
into several sub-regions, named blocks, which can
be mapped into normalized square domains. The
weak-form Petrov—Galerkin method and polynomial
series of interpolations are employed in each block.
The computational efficiency is rigorously
examined against the strong-form finite block
method, the finite element technique and meshless
approaches [16].

The improved element-free Galerkin (IEFG)
method is proposed for solving 3D Helmholtz
equations. The improved moving least-squares
(IMLS) approximation is used to establish the trial
function, and the penalty technique is used to
enforce the essential boundary conditions. Thus,
the final discretized equations of the IEFG method
for 3D Helmholtz equations can be derived by
using the corresponding Galerkin weak form. The
influences of the node distribution, the weight
functions, the scale parameters of the influence
domain, and the penalty factors on the compu-
tational accuracy of the solutions are analyzed [17].

The heat transfer analysis in this paper will be
conducted in three dimensions. To reduce cost and
computer time, the three-dimensional analysis will
be simplified to a two-dimensional axisymmetric
analysis [7,18-22]. This is achievable because in
axisymmetric conditions, the temperature devia-
tions is only in (R) and (©) while there is no tem-
perature variation in the (z) direction as seen on
Figurel.

The Galerkin weighted residual technique is
utilized to prove the mathematical approach [23-
28]. In this research 2-dimensional will be adopted
to determine LHP.

2. MATHEMATICAL APPROACH

The temperature history of the quenched
cylindrical steel bar should be evaluated at any
point; three-dimensional heat transfer can be
examined using two-dimensional
axisymmetricelements, as illustrated in Figure 1.

Temperature distribution approximation for an
arbitrary linear triangular element [Saeed Moavani,
1999]:

T® =a +a,R+a,Z ()

R and Z is any point inside the element itself,
based on global body.

The area for triangular element [Ismail Sharif
2005]:
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Figure 1. This image clearly represented
axisymmetric element from the domain

Slika 1.Predstavljen je osnosimetri¢an
element iz domena

Shape function of 2-Dimentional Axi-symmetric
triangularelement.

The field variable's variation over the element
was to be represented by the shape functions. The
shape function of the axi-symmetric triangular
element are expressed in terms of the r and z
coordinates typically used for axi-symmetric
triangular elements and its coordinates as seen in
Figur 2.

Which are proved to produce the shape
functions that are demonstrated below;

S, :(ij(ai +Br+682) (3)

S, =(ij(aj + By +68,2) 4

S, :(i}(ak + B +6,2) (5)
Where;

a; =Rjzk_Rij.ﬂi :Zj_zk 5| :RK _Rj
a,=RZ,~RZ, B,=2,-2, 5, =R —R,

@ =RZ,~RZ f,=2,-2; 5, =R, ~R
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Figure 2. The global coordinate system of a
typicaltriangular elements

Slika 2.Globalni koordinatni sistem tipi¢nih
trouglastih elemenata

Natural area coordinate

For a triangular element, the natural area
coordinates; ¢, n, A are defined as shown in Figure
3. by:

A Ay
— A=
A

A
SERM=RAER

(6)

The triangular natural area coordinates are
exactly identical to the shape functions S;, S;, Sy

§=Si,r]=Sj,A=Sk (7)

KR, Z) %
[£=0,7=0.2=1)

Figure 3. Natural coordinates used for a
triangularelement

Slika 3.Prirodne koordinate koje se koriste za
trouglasti element

Derivation of the heat conduction equation in
Axi-symmetric elements

Figure 4 illustrates the application of energy
conservation to a differential volume cylindrical
section
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Slika 4.0snosimetriéni element iz Aki simetri¢nog
tela
Ein_ Eout + Egenerated = Estored (8)

By reducing the differential volume term, the
heat transfer-transient through the component
during quenching can be mathematically repre-
sented; the heat conduction equation is proved and
provided by; Eqg. 9.

HEHEE IS SR I
rdr dr) r=de do) dz dz dt
k, = coefficient of heat conductivity in z-

direction, W/m-°C

k. = coefficient of heat conductivity in r-
direction, W/m-°C

ke = coefficient of heat conductivity in 6-
direction, W/m-°C

t =time, s

¢ = medium's specific heat, J/kg-K

q = heat generation, W/m?

T = temperature, °C

o = mass density, kg/m®
Formulation of the Galerkin Weighted Residual
Method

From the obtained equation of heat conduction,
the Galerkin residual for the triangular element in
an unsteady state heat transfer by integration the
shape functions times the residual that reduces the
residual to zero;

© kd( dT dzT
[RI” = [sT [rdr(rd—rj+kdzz+q]dv_

-I[sT [p ddT jdv -

v

(10)

LISTT{RY P aV =27[S] {®R}rdrdz  (11)
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Thus Eqg. 10 consists of four parts as shown in
Eqg. 12;

[S] { [r?j}drduz kjf [S] { ( ?Z-J}drdz w2
+2ﬂg[s]T G drdz -mg[sf {p c rat}drdz

where:

S
[sT =
Sk
values of shape functions are as shown in
equation 3, 4 and 5.
Chain rule

The Term 1 and 2 of Eg. 12 can be re-arranged
using the chain rule which states that;

(fg) =fg~ +gf" (13)
Therefore, fg~ = (fg) —f g
Term 1 of Eq. 12 is rearranged thus;
_ a[s] _
[S]” ( aTj 0 [[s]T Qj os] por (14)
or\ or or or or or

Similarly, Term 2 of Eg. 12 is rearranged

thus;
(T ol o[s] ot
[S] [azzj ([ I j oz | oz

Thus Eq. (12) becomes consists of six parts as
shown in Eq.16;

(15)

B

o1 o 2o

[}

raT}drdz +
or

2ﬂkjj{aaz([] (ZT drdz 27rkjj{ p aT}drdz+
27:[][8] grdrdz - 27zfj[S] { %}drdz

_v—/
E

(16)

Note that Eq. 14 and 15 each consists of two
Terms, the first Terms (A and C) in Eq. 16 are the
heat convection terms and the second Terms of
each of the Egs. (B and D) in Eqg. 16 are the heat
conduction terms. Considering Egs. (B and D)
which are the heat conduction terms, both terms
are evaluated to obtain the conductance matrices
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in the r and z direction respectively, therefore we
have that; for Eq. B,

i(oxi +BR+5Z)

ols o S1oal 1 | A
o o S, “ar ﬂ(an“LﬂjR“L@Z) “5A B

1 B
ﬂ(ak +ﬂkR +5kZ)

(17)
where:
aT 5 T
_ 18
o “arlS S osimy @
Tk
- R +R +R
r=SR +SR, +SR, =——= (19)
3

[Stasa, F. L. (1985) Pappus-Guldinus theorem]

After Substituting Eq. 17, 18 and 19 in Eq. B
and simplifying, we get

2
: . : T
7Zk(R| +Rj +Rk) ﬁ| /B|€J ﬁlﬁk i
= 6A ﬂiﬂj ﬂj ﬂjﬁk Tj
ﬁilBk ﬂjﬂk :Bkz Tk (20)
Similarly, Eq. D in z-direction,
2
7k (R +R; +R,) o ‘yifj %% ||
= oA 55, & 55, 1T,
5i5k 5j5k 5k2 Tk (21)
Note in our case quenching from auste-

nitization temperature to the ambient temperature
thus no heat generation within the element, it
means no the thermal load due to heat generation,
therefore Eqg. E become zero;

Thus Eq.

E=J[[S] q Fdrdz =2~ gff[S] Fdrdz (22)

Green’s theorem

The Green’s theorem is used to re-write area
integrals in terms of line integral around the
element boundary[29-35]. This theorem is applied
to Eq. A and Eqg. C.

zﬁkg{;[[sf raa-:j}drdz — 27k[ [ST r%cosgdf
(23)

Zﬂkg{a—az([S]T F%J}drdz = 27rij[S]T F%sin@dz—
(24)

The combination of Eq. 23 and 24;
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=27k [S] r_z—-:cose dr+27k] [S] FZ—Isin odr

(25)

After substituting in Eq. 25 and simplifying,
where the conservation of energy is applied on the
r- and z-direction

— oT
= k< —h(T-T,)=
or ( 0)

n — n
q conduction T q convection

_ k9T, we get;
oz

= —2zth[ [S] (T)dz+2zrhf [S] (T,)dz
(26

If there is a possible convection on the
elements edge Fig. 5 and Fig. 6, the first Terms of

Eq. 26 contributes to the conductance matrix as
shown;)

Alongi - j,

=S (ST

1
kR, Z) -,
(E=07=0i=1)

(£=0.n=11=0)
JR2)

iR 2D
(E=1g=0.4=0)

L.

Figure 5. Possible convection through ij-edge
Slika 5. Moguca konvekcija kroz ij-ivicu

3R +R; R+R. O
@ 27hl; ' ! ' !
[K]? =—-"| R +R; R +3R; 0
12 ' ! ' !
0 0 0 @7)
Along j - k,

2af[[sT {p c F%}drdz

A
(6R+2R +2R) (2R +2R+R.} (2R +R +2R) (1
(2R +2R +R,) (2R +6R +2R,) (R +2R +2R,) [T,
(2R +R;+2R,) (R+2R +2R,) (2R +2R;+6R,) T,

_2mpcA
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k(B Z2)

. . [g=0n=141=0)
[E=07=0,4=1) e i

iR2D
[#=1n=0,2=0)

L.

Figure 6. Possible convection through jk-edge

Slika 6. Moguca konvekcija kroz jk-ivicu

0 0 0
© 27l
K] == |0 3R +Rc R;+R,
0 R;+R, R;+3Ry (28)
Along Kk - i,
oahl 3R, +R, 0 R;+Ry
[K](e) — 5 ki 0 0 0
R, +R, 0 R, +3Ry (29)

If there is a possible convection at the element
edge, the second terms of Eq. 26 contribute to the
thermal load matrix as shown;

Alongi—j
2R +R;
27zhT, | !
[F](e)=—6 L R, + 2R,
0 (30)
Along
0]
. R 20T 1
i—k,[F]® :% 2R; + R,
R; +2R,
(31)
Along
2R, + R,
ki [F]® =270 Tl 0 (32)
6 R, + 2R,

The capacitance matrix which is the unsteady
state factor is given by the fourth Term of Eq. 12
and the sixth Term of Eq. 16, the transient
Equation; it is derived as follows;

27rj'Aj'[S]T {p c r_%}drdz

332

with
o T
== s s, s 1T,
Tk
Thus
sz ss, ss]|'|
[C]® =2mpc]|SS, S? S,S,|{T trdrdz
A
SS. SS. S ||t

Applying the Papus Guldinus theorem and
simplifying,

We get;

[K](G) {T (t)}(e) +[C]<G) {T (t) -T (t At)}(e) _ {F (t )}(G) (33)

at

Formation element Matrices to Global Matrix

[K](G) {T (t)}(e) +[C](G) {T(t)‘T(t‘At)}(G) ={F(t )}<G>

At

For all the elements in the domain, assemble
the global, conductance, capacitance, and thermal
load matrices as well as the global matrix of the
unknown temperature i.e. the element's condu-
ctance, capacitance and thermal load matrices
have been obtained. All finite element analyses
need the construction of these elements. The
global matrix will be assembled to form the assem-
blage conductance, capacitance and thermal load
matrixes.

Combining these components produces the
subsequent finite element equation:

In general:

(@) @ ©) (F(©) ®
K T C T =1{F
(KIS + [0 )7 = (ry @,

K]®= [kJ® + [k = The global matrix of
conductance caused by conduction and if there is a
possible convection at the elementedge (s),

{T}® = Unknown temperature at each node at
any time,

[cle= Capacitance global matrix caused by the
transient equation,

) ©)
tr
= Rate of change of temperature with
respect to time,
{FY© = (F)© + {F}® = Global thermal load
matrix if there is a possible convection at the
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element edge (s), or if thereisheat generation
respectively, in our case {F}'® =0

The Euler approach

We shall be able to determine the nodal
temperatures as a function of the time utilizing two-
point recurrence formulae. In this work, Euler's
approach, also known as the backward difference
schemes (BDS), will be used to calculate the rate
of change of temperature, as well as the
temperature history at every point (node) on a steel
bar. [35-41].

Once the derivative of temperature T with res-
pect to time t is expressed in the backward
direction and the step time is not equal zero, we
get tha (At = 0)

{1 HT @O} +[c]® {T (t)-T (t- At)}(c’) i

-{F ()

where:

(35)

T = rate of temperature (°C/s);

T (t) = temperature of ts, (°C);

T (t - At)= temperature of (t - At) s, (°C)

At = step time chosen (s) and t = time (s) at
starting time (t = 0)).

By modifying the values of temperature rate {T)

in the global equation of the finite element, we
obtain that;

©) i (e o1 [TO-TE-a1 _ 1o
O R S S a0 -

Finally, the matrices become;

[<]®at+ ]S =1V T +FHSat (o7,

All of the right hand side of Eq. 37 is fully
known at time t, including the initial condition at
time t =0.

As a result, the temperature at each node for a
subsequent time could be estimated given the
temperature for the previous time.

Once a temperature history is given, the main
mechanical characteristics of the bar of steel, such
as hardness and strength, may be estimated.

3. APPLICATIONS

Estimation the history of temperature

The presented mathematical model has been
applied to compute distribution of temperature with
time in thermal analysis-transient of quenched steel
specimen. Cylindrical shape of steel sample has
been heated to 1000°C. After that, quenched in
water to 32°C as ambient temperature, with water
film coefficient of 5000 W/m?-°C. History of tempe-
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rature at each point of cylindrical steel specimen
after quenched is being represented on Figures 7.
& 8. The cylindrical specimen made from low
carbon steels, with properties as mentioned below.

Thermal capacity, pc (J/m*°C)
0<T <650 °C,
¢ = (0.004T +3.3)<10°
650 <T = 725°C,

pc = (0.068T —38.3)x10°

725 <T =800°C,

oc = (—0.086T + 73.55)<10°

T >800°C, PC=4.55%10°
Thermal conductivity, k (W/m-°C)

O0<T <900 °C, k=-0.022T +48

T =900 °C, k =28.2
In our study Eq. 34 becomes;

[KI®T @ 4 [C]@fr ) = (F )
And their respective equation;

I =l + 117 17 + [k, 1+ 1K, 1 ag)

[€1® = [c]® +[c]® +[c]® (39)
FIO = {710 + (R} (40)
The lowest
hardness point gt
nodg M1 2 5 The maximum
hardness point at
(3) node Ms
\ é/
0.1m M, 4
[V - -/‘-G'O-O" =M
Mz, M, Ms ?
Ay R
$h N 0.05m
v
Ri=0mM eeeees H :

N Rs=1.25x 102m

o o 2
R, = 0.3125 x 102m R;=0.9375x10"m
R3=0.625x 10%m
Figure 7. MM cross section of the domain

Slika 7. MM presek domena
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A mathematical model is used to attain
distribution of temperature at any point of quen-
ched steel using boundary conditions and data
inputs, for instance, is the transient-state tem-
perature distribution estimates of five nodes from
the center (M,) to the surface (Ms) of quenched
specimen which were calculated as illustrated on
Figure 7 & Figure 8.

Temperature History of MM-cross-section

1400

1200 4

1000 4

800

600 4

Temperature, T (degree C)

400 1

200 +

Time, t(s)

Figure 8. Temperature history of MM cross-
section((0 < R <0.0125 m), Z = 0.05 m).

Slika 8. Istorija temperature MM poprec¢nog
preseka ((0 < R <0,0125 m),Z = 0,05 m).

Verifying mathematical models

To validate temperature distribution results, the
ANSYS program is utilised using the same input
data of steel properties and boundary condition as
in the mathematical model. Figurative representa-
tions of the temperature distribution from the
ANSYS analysis are provided on Figs. 9.a & 9.b

R -

B 3
2558588888 ¢

T

Figure 9. a) distribution of temperature just before
steel sample becomes entirely cooled and b)dis-
tribution of temperature at moment that entire steel
specimen becomes completely cooled after 260s.

Slika 9. a) raspodela temperature neposredno pre
nego Sto se Celi¢ni uzorak potpuno ohladi i
b)raspodela temperature u trenutku kada se ceo
Celicni uzorak potpuno ohladi nakon 260s.
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250.00
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3875
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40.00 50.00

Load Step

Figure 10. ANSYS-temperature vs time graph

Slika 10. ANSIS-temperatura u odnosu na vreme
grafik

On Figure 10, temperature time graph from
ANSYS analysis is presented;

The graphs on Figures 8 and 10 clearly
demonstrate that the temperature history of
guenched steel has the same patterns. Heat
transfer is uniform throughout the steel specimen.
Since the common cooling time, necessary for

structural transformation for the majority of
structural steels, is the time of cooling from 800 to
500°C (time tgs)[42-48]. So, there are two
significant temperatures to consider when

calculating the cooling time (800°C and 500°C).
Then, essential mechanical properties including
hardness may be calculated. According to the
mathematical model for the 1st node with M, on the
centre, quenching from 1000°C to 800°C takes
5.120 seconds, quenching from 1000°C to 500°C
takes 10.442 seconds, while, time of cooling (t.)
takes 5.322 seconds.

Whereas by using ANSYS, we noticed that the
quenching for the same node Mj; were 3.932
seconds for 1000°C to 800°C and 9.618 seconds
for 1000°C to 500°C, then time of cooling equal to
5.686 seconds. And it was reported that, for the
mathematical model and ANSYS, t. = 3.7944 and
4.762 sec respectively, for the nodes on the sur-
faces Ms and Mss. It is clear from the aforemen-
tioned that both approaches strongly agreed.

Calculation LHP

Estimating the desired time of cooling

To compute the time of cooling, t., time for the
(points) to cool from 850°C to 800°C is documented
and subtracted by the time for the sample to cool
until 500°C.

te=tgoo-1s00

We can calculate the time it took for node M; to
reach 800°C from Figure 3.

ZASTITA MATERIJALA 64 (2023) broj 3
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tgoooc =5.120s

Similarly, it takes 10.442 seconds for node M;
to reach 500°C (tsgo’c = 10.442s).

Thus, the Node M; Cooling Time t;
tc = tsoooc - tgoooc =10.442-5.120=5.322s

The cooling time t. was estimated in the same
manner for nodes M, to Ms, with the final findings
displayed in Table 1.

Table 1. lllustrates time of cooling t; and cooling
rate (ROC)

Tabela 1. llustruje vreme hladenja tc i brzinu
hladenja (ROC)

Estimate the hardness of a quenched steel
specimen.

The HRC could be estimated using the
Practical date Handbook, the Timken Company
1835 Duebex Avenue SW Canton, Ohio 44706-
2798 1-800-223, www.timken.com, which demon-
strated the relationship for this type of steel
between J-Distance with HRC, and then HRC can
be evaluated as previously explained. The final
findings represented on Figure 11 &Table 3.

Table 3. Time of cooling, Rate of cooling, Jominy
distance and HRC of nodes M;-Ms, water-
cooled by MM

Tabela 3. Vreme hladenja, Brzina hladenja, Jomini
rastojanje i HRC ¢vorova M1 - M5, vodeno

Node te (S) ROC (°C /s) ,
M, 5.322 56.368 hiadeni MM
M, 5218 57.494 Roc | Jominy- | dness
Ma 5.082 59.028 Nodes | tc(s) °C Is) distance (HRC)
M. 4.790 62.636 (mm)
Vs 3794 79.064 M1 5.3222 | 56.368 7.0329 25.485
M3 5.2179 | 57.494 6.9429 25.821
M3 5.0823 | 59.028 6.8238 26.274
Using the Standard Jominy distance vscooling time M 4.7896 | 62.636 6.5579 27.313
curve to get the Jominy distance Ms 3.7944 | 79.064 5.5578 31.346

To acquire the appropriate Jominy distance,
cooling time, t. will now be fitted into the Jominy
distance versus cooling time curve. Jominy
distance may also be estimated via Microsoft Excel
using polynomial expressions with polynomial
regression.

The common Table [Cooling rate at each
Jominy distance (Chandler, H., 1998)] will be
utilised in this paper.

Therefore, using the data [from Cooling rate at
each Jominy distance (Chandler, H., 1998)], the
Jominy distance of nodes M; to Ms will be
determined. The final findings are provided in Table
2, where.

The definition of ROC, (Rate of Cooling);
_ 800°C-500°C _ 800°C-500°C (°C/s)

tc t500 °C

ROC

- t£;00°(:

Table 2. Time of cooling, Rate of cooling and
Jominy distance of nodes M; to Ms

Tabela 2. Vreme hladenja, Brzina hladenja i Jomini
rastojanje ¢vorova M1 do M5

Nodes | to(s) | ROC (°C Js) Jom'”(}’n‘:T'sta”ce
M. | 53222 | 56.368 7.0329
M> 5.2179 57.494 6.9429
M; | 50823 | 59.028 6.8238
M. | 4.7896 | 62.636 6.5579
Ms | 3.7944 |  79.064 55578
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Figure 11. Distribution of hardness along the MM
cross section at Z = 0.05m for nodes M; to Ms from
the centre to surface by developed mathematical
model

Slika 11. Raspodela tvrdoc¢e duz MM popreénog
preseka na Z = 0,06m za ¢vorove M1 do M5 od
centra do povrsine razvijenim matematickim
modelom

Verification of mathematical models

The same procedure and steps taken to
determine the hardness at each point even LHP of
the quenched industrial steel bars by developed
mathematical model as explained above, will be
applied here by using ANSYS SOFTWARE
analysis, from temperature-time graph by the
ANSYS analysis which seen on Fig. 10, time of
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cooling, rate of cooling, Jominy distance then LHP
can be determined, the final results illustrated on
Table 4 and Figure 12.

Table 4. Time of cooling, Jominy distance and HRC
for nodes Mj; to Mss, water cooled using
ANSYS

Tabela 4. Vreme hladenja, Jomini udaljenost i HRC
za ¢vorove M11 do M55, vodeno hladenje
pomocu ANSIS-a

Nodes | Cooling time, | J-distance (mm) | HRC
Mi1 5.696 7.352 24.34
Mz 5.689 7.340 24.37
Ma3 5.686 7.327 24.42
Mg 5.525 6.937 25.83
Mss 4.762 6.53 27.4
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Figure 12. According to ANSYS, the distribution of
hardness along the MM cross section at Z = 0.05m
for nodes M; to Ms from the centre to surface

Slika 12. Prema ANSIS-u, raspodela tvrdo¢e duz
MM poprecnog preseka na Z = 0,05m za ¢vorove
M1 do M5 od centra do povrSine
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Fig. 13. The HRC comparison between the MM
results and ANSYS

Slika 13. HRC poredenje izmedu MM rezultata i
ANSIS-a
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Hardness comparison

The comparison of HRC between the
mathematical model results for the nodes M;-Ms
and ANSYS SOFTWARE results for the nodes M-
Mss for the same quenched steel specimen shown
below on Figure 13.

4. CONCLUSIONS

A steel quenching mathematical model has
been constructed to determine the distribution of
temperature thus cooling times, cooling rate,
Jominy distance, and lastly the hardness of the
guenched industrial steel bar at any position (point)
even LHP in a cylindrical shape specimen. The
finite element Galerkin residual approach is used to
build the model. The numerical simulation of
guenching consisted of numerical simulation of
temperature transient field of cooling process. By
comparing hardness findings with ANSYS software
simulations, this mathematical model was
examined and validated. According to the
mathematical model and ANSYS findings, the
nodes on the surface [Ms and Mss] cool quicker
than the nodes at half the length at the centre [M;
and Mll] because tems< tomi and temss< temits This
means that the mechanical properties, such as
hardness, will differ, with the hardness on the
surface nodes [Ms and Mss] being greater than the
hardness on the centre nodes [M; and Ms] and this
is which we found in our results by developed
mathematical model as illustrated on Table 3, Fig.
11 and also by ANSYS Table 4, Figurel2, where
the hardness on the surface at the nodes [Ms and
Mss] equals 31.3 and 27.4 respectively, whereas
the hardness at mid the length in the centre [M;
and Ms] equals 25.485 and 24.34 respectively.

The results indicated that the node at the
surface, such as Ms and Mss, will be the 1st to
completely cool after quenching because it is in
contact with the cooling medium, followed by the
other nodes on the radial axis to the centre,
respectively. The final point will completely cool
after quenching will be at mid the length in the
centre, like in our study with M; and My;. As a
result, LHP will be half the length of the quenched
industrial steel bar at its centre. It will be more
necessary to understand LHP once the radius of
the quenched steel specimen is high because LHP
will be low, that is, lower than the hardness on the
surface, implying that increasing the radius of the
bar is inversely proportional to LHP.

It is clear that the developed mathematical
model has been verified and validated by
comparing its temperature simulation and hardness
findings withcommercial finite element program,
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ANSYS simulations. The comparison shows that
the proposed model is reliable.
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1ZVOD

NOVO 2-D MATEMATICKO MODELIRANJE ZA ODREDIVANJE LHP ZA
ZASTITU INDUSTRIJSKOG PROLAZNOG TOPLOTNOG TRETMANA KALJENI
NISKOUGLJENICNI CELICI BAR

2-dimenzionalni matemati¢cki model osovine simetriCne tranzijentne industrijske Sipke od
niskougljeni¢nog Celika, da bi se ispitao uticaj istorije procesa na metalurske i karakteristike
materijala, usvojen je vodeno hladeni model zasnovan na tehnici konacnih elemenata.
Dvodimenzionalni osnosimetricni matematicki model je koriS¢en za predvidanje istorije
temperature i, kao rezultat, tvrdoce kaljene celiéne Sipke u bilo kom c¢voru (tacki). Ocenjuje se LHP
(najniza tacka tvrdoce). U ovom radu, tvrdoca taCaka uzorka je procenjena transformacijom
utvrdenog karakteristicnog vremena hladenja za faznu konverziju t8/5 u tvrdoéu. Model se moze
koristiti kao smernica za dizajniranje pristupa hladenju da bi se postigla Zeljena mikrostruktura i
mehanicka svojstva, na primer, tvrdoc¢a. Matemati¢ki model je verifikovan i validiran
uporedivanjem njegovih rezultata tvrdoCe sa rezultatima komercijalnog softvera konacnih
elemenata. Poredenje pokazuje da je predloZeni model pouzdan.

Kljuéne reci: toplotna obrada, gaSenje, ososimetriéna celicna Sipka, konacni elementi, 2-D
matematicko modeliranje, prenos toplote u nestabilnom stanju.
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