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ABSTRACT 

This paper analyzes behavior (spectra and states) of the elementary charge carriers in anisotropic 
perovskite structures, such as modern superconducting ceramics. Translational symmetry of the 
atom (ion) distribution of the electron (or hole) system is broken by atomic/ionic/molecular 
sputtering and doping, as well as due to existence of two boundary surfaces. This is a charge 
carrier’s model of high-temperature superconductors in which the observed symmetry breaking 
orthogonal to CuO planes was treated as a perturbation. The single-particle fermion’s wave 
functions and the possible energies of charge carriers were determined. 
Keywords: Charge carriers, boundaries, anisotropy, energy states and spectra, one-particle wave 
functions. 
 

1. INTRODUCTION 

The answer to the question of the oxide 
ceramics superconductivity mechanism must be 
undoubtedly sought in the phonon subsystem, in 
the elementary charges subsystem as well as in 
the interaction of these subsystems. With regard to 
the very anisotropic structure of the supercondu-
ctive ceramics [1–4], we have attempted to 
construct a theoretical model conveying the broken 
translational symmetry of atoms (or molecules) 
arrangement along one direction in the crystal 
lattice, the difference of masses of these molecules 
and the presence of two boundary planes along 
this direction [5–9]. 

The phonon system is drawn out in this model 
[2,4–9]. We have determined the phonon states 
and their energy spectra and we have shown that, 
due to the broken crystal symmetry (actually 
because of deformed and tiny granular structure), 
the phonons of optical type owning the energy 
gaps are present here. The next task that we have 
attempted to solve is to determine and analyze the 
spectra of charge carriers (electrons or holes), 
Landau criterion, the probabilities of states and 
entropy within the same model [10–12]. 
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2. FORMATION OF THE MODEL STRUCTURE 

In order to obtain Hamiltonian of the charge 

carriers in the structure with broken translational 

symmetry, it is the most suitable to start with the 

standard Hamiltonian of electron system in an ideal 

infinite structure: 
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where m
*
 is charge carriers effective mass, while 



k
a  and 

k
a   are Fermi’s creation and annihilation 

operators of charge carriers with momentum 

k and energy 
m2

k 22
 [13–15]. If we go over to the 

configuration space using the transformations: 
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where N is the number of molecules in the 

considered structure, we get: 
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Due to the canonicity of the transformation (2), the 

operators 

k
a   and 

k
a   are also Fermi’s operators. 
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Let us recall the most important assumptions of 
our model: we consider the tetragonal, i.e. 
generalized cubic structure with very high 
anisotropy along the z axis. It means that the lattice 
constant in this direction (az) is a few times larger 
than the lattice constant ax, ay in the directions x 
and y. The translational symmetry is fully 
conserved in the XY planes, while the symmetry of 
the masses arrangement along the z direction is 
broken (during the doping of the ceramic structure 
by the introducing of foreign atoms, the sputtered 
atoms locate along this direction because it is 
energetically most convenient). We also assume 
here that the structure under consideration is a thin 
film. It means that the components of lattice vector 

 z,y,x nnnn 


 vary in the following way: 
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The numbers of atoms Nx and Nz along the 
directions x and y, respectively, may be indefinitely 
high, since we have the translational symmetry 
along these directions. The number of atoms along 
z direction (Nz) is limited. The above described 
model, i.e. the highly anisotropic matrix along the z 
direction, necessarily doped with foreign atoms, 
can be used for getting some qualitative 
conclusions about the superconductive ceramics 
behavior. It is known [1–4] that the ceramic oxides 
are anisotropic along one privileged direction and 
that the superconductive state is realized by 
doping. But the real structure of the ceramic oxides 
– perovskites is approximated by the tetragonal 
structure. It is also assumed in the model that the 
sputtering is symmetric on the both of boundary 
planes: nz = 0 and nz = Nz and between the layers 
nz = 0 and nz = 1 (as well as between the layers nz 
= Nz – 1 and nz = Nz) n0 foreign particles are placed, 
in such a way that the structure of the doped matrix 
is unchanged near the middle of the film. 

If the behavior of the quantities from (3) may be 
expressed by the law: 
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in the nearest-neighbors approximation we get: 
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According to the described view of the doping, it is 
obvious that lattice constant az in the doped 
structure becomes dependent on the position nz, 
i.e. az  az (nz). Because of the symmetry on the 
boundary planes, i.e. boundary layers: 
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The dependence of the lattice constant on the 
index nz causes the dependence of the interaction 
along z direction on the index nz, i.e. 
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where 
1n

nh

0

0


 . The interactions Wx and Wy, 

according to the described picture, are unchanged. 
We must notice that the last two expressions are 
valid  for  even Nz. But, for large enough  Nz  (Nz ≈ 
≈ Nz+1), or during the transition from nz to continual 
variable z, the deviations from the formulas (6) and 
(7) for odd Nz are not essential. The values of V are 
not dependent on the index of the site; because of 
they are unchanged during the doping. Hence we 
can write the Hamiltonian of the doped structure in 
the form: 

VB HHH  , (8) 

where: 
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and, as we can see, it is related to the boundary layers (nz = 0 and nz = Nz), where obviously 

0WW 1N,n,n;N,n,n1,n,n;0,n,n zyxzyxyxyx
  , and for HV we find: 

     

      

1

V 0 0 1, 0 1, 0 1,0 1,0 1

, 0

1, 1, 1, 1, 1

1

1 .

z

x y x y x y x y x y x y x y

x y z

x y z x y z x y z x y z x y z x y z x y z

N

n n n n x n n n n y n n n n z n n

n n n

n n N n n N x n n N n n N y n n N n n N z n n N

H a Va W a a W a a W a

a Va W a a W a a W a




   





    

        
 

       
 

 
         (10) 



J. P. Šetrajčić et al. Possible states of charge carriers in thin multilayered superconductive ... 

ZASTITA MATERIJALA 57 (2016) broj 2 241 

3. SINGLE-PARTICLE STATES 

We shall analyze the system described by 
Hamiltonian (8) using the orthonormalized single-
electron state functions: 
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We obtain the equations for finding the coefficient 
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On the basis of equations (8 – 10) and (12), we 
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We shall perform the further analysis in the 
continual approximation in order to avoid the 
complications arising during the determination of 
the coefficient An  from the system of difference 
equations (13). Introduction the continual variable z 

through: nz  zaz  (Nz  L/az) causes the following 
transformations of the expressions (7) and (6): 
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The coefficients 
znA  will be transformed in the 

following way: 
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The important consequence of the transition to the 
continuum is the fact that the first two equations 
from (13) vanish from the calculation at nz  z, i.e. 
they are merged into the last of equations from 
(13), which in the continual approximation has the 
form: 
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By the assumption: 
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equation: 
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solutions for Hermite-Weber equation: 12   ; 

μ = 0, 1, 2, … On the basis of this we find:  

 
  




























2/1

22z
22

2,1
b12

2
11W12b2Q4E


 ,

 (17) 

were L/ab z . The expression for energies (17) 

indicates that index μ must be limited from below 
(the energies must be real): 

1
2

b

1
2 


 . (18) 

It means that the minimal allowed value of the 
index μ is the minimal integer which is bigger than 
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the final term in (19). As we can see, the lower 
boundary of quantum number μ depends on the 
number of structural layers (through Nz), on the 
way of sputtering (through n0) and on the type of 
ion-ion interaction (through h). If the thickness of 
the structure increases, the lower value of μ 
increases too. 

For simplifying, instead of the expression (19), 
we will use the approximate expressions for 
energies, which we obtain by the expansion of the 
square root up to the quadratic terms:  
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It is very easy to notice that both obtained 
expressions for energies satisfy the necessary 
condition (18). However, by the analysis of (19), we 
can conclude the following. 

 Since E2 < E1, the states with energy E2 are 
more stable and more populated and so they 
essentially define the normal behavior of the 
system. 

 From the expressions (19) it follows that the 
increase of film thickness (the increase of Nz) 
causes the increase of lower boundary of the 
index μ, and the correction of E2, which 
depends on sputtering, decreases. This is in 
the complete agreement with the conclusions 
which we can accomplish without going over to 
continuum, i.e. directly analyzing discrete 
equations (13). 

We can see in expressions defining ζ, text 
under (18), that the boundaries of the interval for ζ 

are proportional to b/1a/L z   and so we can 

approximately take:   , , where the appro-

ximation is better if the film is thicker. We can then 
express the solutions of equation (16) using 
Hermits polynomials:  
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In this way we have defined single-particle 
degenerate states of the system: for the wave 
functions – by the equations (11), (13) and (20) and 
for energies – by (19). 

4. CONCLUSION 

The particular features of high-temperature 
superconductors on the basis of oxide ceramics 
are their granular structure and the anisotropy of 
properties. The existence of the weak isotopic 

effect and Cooper pairs of charge carriers is 
experimentally verified, similar as in the 
conventional superconductors, but BCS model was 
not able to explain high critical temperature. For 
that reason and on the basis of established 
experimental results [16–20], we have proposed 
the model of ceramic structure as tetragonal i.e. 
generalized cubic structure in which interatomic 
distances along one direction are few times bigger 
than along other two directions. It is, energetically, 
most convenient if the sputtered atoms locate 
themselves just along this direction. 

The analysis of phonon spectrum in our model 
[21–25] yields that we have phonon branches of 
optical type only in the spectrum (there exists 
energy gap). It means that for phonon excitation it 
is necessary that the energy (heat) is bigger than 
the energy gap. 

The analysis of electron spectrum in these 
symmetrically deformed structures (with respect to 
the planes nz = 0 and nz = Nz) yields that, as a 
consequence of existence of the boundaries along 
z axes, we have two energy branches in the 
spectrum of charge carriers. Lower value of energy 
is related to more populated states and contains 
the term depending on the sputtering. This term 
decreases with increasing of the film thickness. 
Higher value of energy in the spectrum of charge 
carriers is not particularly analyzed because these 
levels are low populated. 
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IZVOD 

MOGUĆA STANJA NOSILACA NAELEKTRISANJA U TANKIM VIŠESLOJNIM 
SUPERPROVODNIM KERAMIKAMA 

U radu je analizirano ponašanje (spektri i stanja) elementarnih nosilaca naelektrisanja u 
anizotropnim perovskitnim strukturama, kakve su savremene superprovodne keramike. 
Translaciona simetrija atomskih (jonskih) rasporeda sistema elektrona (ili šupljina) je narušena 
atomskim/jonskim/molekulskim rasprašivanjem (spaterovanjem) i dopiranjem, kao i postojanjem 
dveju graničnih površi. Ovo je model nosilaca naelektrisanja kod visoko-temperaturskih 
superprovodnika u kojem se posmatrano narušenje simetrije normalno na CuO ravni tretira kao 
perturbacija. Određene su jedno-čestične fermionske talasne funkcije i mogu e energije nosilaca 
naelektrisanja. 

Ključne riječi: Nosioci naelektrisanja, granice, anizotropija, energetska stanja i spektri, jedno-
čestične talasne funkcije. 
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