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ABSTRACT

This study investigated the simulation and optimization of synthetic methane production over
Ni/MgAl204in a multi-tubular fixed-bed reactor. The study comprises process simulation conducted
using Aspen HYSYS software, modelling and optimization using response surface methodology
(RSM) and artificial neural network (ANN) modelling performed using Design Experts and
MATLAB software, respectively. In the process simulation for the CO2methanation, sensitivity
analyses were performed to determine the effects of temperature, pressure, H2/CO:2 ratio, and CO
fraction in the feedstock on CO2zconversion,CHs yield, and CH4 selectivity. RSM and ANN models
were built using datapoints provided by the process simulation results to model the relationship
between input variables and output responses and perform optimisation for RSM model and ANN
model coupled with genetic algorithm (GA). The process simulation results profoundly
highlightedtheimpact of temperature in enhancing CO: conversion and CHas yield. Higher
temperatures favoured the endothermic reversed water-gas shift (RWGS) reaction, leading to
increased CO:2 conversion and CHa yield. CO:2 conversion, CHs selectivity and yield were found to
be minimally affected by pressure. CO fraction in the feed was found to exert a delicate influence
on the CO: conversion and CHa yield. Excessive CO fractions hindered the methanation process,
reducing both CO:2 conversion and CHs yield. Additionally, the H2/CO: ratio proved critical as
higher ratios facilitated higher CO2 conversion, CHa selectivity, and yield, emphasizing the
significance of optimal hydrogen to CO: ratio for efficient methanation which was proposed to be
at values higher than the stoichiometric value of 4:1. Furthermore, the ANN-GA model
outperformed RSM in terms of prediction accuracy and optimization. The ANN model
demonstrated superior capabilities in capturing the complex relationships between the input
variables and output responses demonstrated by the performance metrics including R? values,
MSE, RMSE etc. The optimisation results of the ANN-GA model provided more precise and
efficient predictions when compared with RSM, offering a deeper understanding of the intricate
interactions within the methanation process.

Keywords: Artificial Neural Networks, CO2 Methanation, HYSYS Modelling, Response Surface
Methodology, Reverse Water Gas Shift, Langmuir-Hinshelwood-Hougen-Watson Rate Expression

1. INTRODUCTION

Fossil fuels have served as a reliable and cost-
effective energy source for centuries. The advent of
the Industrial Revolution, driven by innovations like
the internal combustion engine, led to remarkable
scientific, technological, and industrial progress
facilitated by the fossil fuel economy [1].
Nonetheless, fossil fuels face  significant

The usage of fossil fuels contributes
substantially to CO2 emissions, a major
greenhouse gas responsible for the climate issues
we observe today, particularly global warming,
which entails an increase in average global
temperatures [4]. Global warming is a pressing
global issue due to its potentially catastrophic
consequences, necessitating urgent attention

challenges, including dwindling reserves and the
rise in anthropogenic carbon dioxide (COy)
emissions, making them less desirable in the face
of global environmental concerns [2, 3].

*Correspondig author:

E-mail:

Paper received: 11.11.2024.

Paper accepted: 06.01.2025.

The website: https://www.zastita-materijala.org/

before it escalates into a pandemic [5].

Various strategies have been proposed for CO2
reduction, such as enhancing energy efficiency,
replacing fossil fuels with renewable or low-carbon
energy sources, employing carbon capture and
storage (CCS) technologies for CO2 removal, and
expanding the wuse of carbon conversion
technologies that transform captured CO: into
valuable fuels and chemicals [6]. The conversion of
captured COz: into value-added fuels and chemicals
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offers a unique solution to address global warming
while providing synthetic fuels and chemicals.
However, it's a challenging task to activate CO:2
and convert it into hydrocarbons or alcohols
because CO: is a fully oxidized, thermodynamically
stable, and chemically inert molecule [7]. Another
challenge arises from the low C/H ratio achieved
during CO:2 hydrogenation, primarily due to the
relatively weak adsorption of CO:2 on catalyst
surfaces. This weak adsorption promotes the rapid
hydrogenation of surface-adsorbed intermediates,
resulting in the formation of methane and a
decrease in chain growth. Consequently, most
research efforts have focused on selectively
hydrogenating CO: into short-chain products, such
as methanol, methane, C2-C4 compounds, etc [8].

Among carbon conversion processes, synthetic
natural gas (CHa) production through CO:2
hydrogenation, has received the most research
focus, primarily due to its higher methane
selectivity [7]. Producing synthetic natural gas
(CHa) in this manner requires a substantial amount
of hydrogen during the hydrogenation process.
Hydrogen can be produced from renewable
sources, such as water electrolysis or biomass,
using renewable electricity (e.g., solar, wind) or
from non-renewable means like fossil fuels (both as
an energy and electricity source) [9]. Synthetic
natural gas (CHa4) serves as a crucial fuel source
for numerous nations, offering a potential
alternative to reduce dependence on Russian gas
and contributing to environmental carbon balance
by achieving net-zero carbon emissions [10].

The Sabatier reaction for synthetic natural gas
(CHa4) production occurs at temperatures ranging
from 150-550°C and pressures from atmospheric to
about 100 bars in fixed-bed or fluidized-bed
reactors [4]. However, the exothermic nature of this
process presents significant challenges, including
limitations in achieving thermodynamic equilibrium
and the formation of soot, which can deactivate
catalysts and hinder the desired reaction product
formation [11].

The Sabatier reaction faces challenges in both
kinetics and thermodynamics. Thermodynamically,
the best CO2 conversion and methane selectivity
(close to 100%) occur at low temperatures when
appropriately designed low-temperature catalysts
are used [1]. Higher temperatures, exceeding
550°C, can restrict CO2 conversion due to
thermodynamic equilibrium, while lower
temperatures may hinder the reaction kinetics,
resulting in low reaction rates [12, 13] Hence,
effective  heat management and catalyst
improvement are critical optimization routes for the
Sabatier reaction process.

The exact reaction mechanism of the Sabatier
process remains a subject of debate in the
literature, particularly regarding the formation of
carbon monoxide as an intermediate in the reaction
[13, 14]. Two mechanisms are commonly
proposed: a direct reaction of CO2 with hydrogen to
form methane and water or a mechanism involving
the formation of intermediate carbon monoxide,
followed by its conversion to methane [4]. The
latter mechanism is widely accepted and forms the
basis for this work.

Heterogeneous  catalytic  reactions are
important in the chemical industry, with catalysts
often sized into small pellets for use in reactors
such as fixed-bed and multi-tubular fixed-bed
reactors. However, this pelletization can lead to
diffusion limitations and the development of
concentration gradients within the pellets,
particularly during methanation reactions [4].
Measuring spatial profiles within these catalyst
pellets can be challenging, making modelling and
simulation crucial for understanding the diffusion-
reaction processes, which are essential for process
design.

Synthetic methane production is a complex and
multiparametric process influenced by various
factors, including temperature, pressure, H2/CO:
ratio, and GHSV (gas hourly space velocity). The
optimisation of carbon conversion, methane yield,
and methane selectivity is crucial for the
improvedprocess economics. Scholars have
sought robust and cost-effective approaches to
address this complexity.Response  Surface
Methodology (RSM) and Artificial Neural Networks
(ANNs) have gained significant attention in this
application[15].

Response surface methodology (RSM) is a
powerful tool for predicting complex processes[16].
It includes principal design techniques such as the
Box-Behnken design and central composite design.
RSM is effective when modelling processes
involving multiple variables[17]. RSM significantly
reduces the number of experimental runs needed
compared to the one-factor-at-a-time method and
is capable of developing empirical models to
describe processes. Its utility has been
demonstrated in numerous applications, including
CO2 hydrogenation and methanation[15, 18]

Ali et al. [19] studied CO2 methanation using
M/Mn/Fe-Al203 catalysts (M = Pd, Rh, & Ru). They
observed that catalytic performance could be
improved by enhancing varying process
parameters such as operating temperature, gas
hourly space velocity (GHSV), and feed
composition. They optimized conditions with
Response Surface Methodology (RSM), which
emphasised the importance of loading. The best
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catalyst observed was Ru/Mn/Fe-Al203 (5:35:60
ratio, calcined at 1,000°C), achieving 96.1% CO2
conversion and 66.0% CH4 formation at 270°C.
Optimal conditions included 5.5 wt % Ru loading,
1,010°C calcination, and 5 g catalyst loading, with
95.0% experimental CO2 conversion which
matched the 96.6% prediction.

Younas et al. [20] conducted a study on CO:
methanation over Ni and Rh-based catalysts at
lower temperatures. They optimized Rh-based
catalysts for CO2 methanation using RSM,
achieving high CO2 conversion (54.4%) and CHa
selectivity (73.5%) at 206.7°C, 12.5% humidity, and
100 mg of the catalyst.

Zhang et al. [21] developed NiFe/(Mg,Al)Ox
catalysts for plasma-catalytic CO2 methanation,
with RSM revealing that higher voltage, lower gas
flow, and higher H2:CO: ratio favoured selective
CO2 hydrogenation to CH4, reaching 84.7% CO:2
conversion and 100% CHa selectivity.

Artificial Neural Networks (ANNs) can model
complex chemical and physical processes due to
their ability to approximate arbitrary non-linear
functions, generalization capacity, computational
efficiency, and handling high-dimensional data.
ANNSs are modelled after the human brain and can
effectively capture intricate nonlinear processes
through built-in  training algorithms, identifying
relationships between dependent and independent
variables [17].

In this study, ANNs/RSM was employed for
modelling and optimizing CO2 methanation in a
multi-tubular fixed-bed reactor. There is to date no
record of the use of ANN and RSM for the
optimisation of CO2 methanation production
simulation process. This research aims to
determine the suitability of RSM and ANN for
process modelling and optimization while
evaluating the process performance. Process
modelling was conducted using HYSYS software,
which provided data for subsequent statistical
analysis.

2. THEORETICAL CONCEPTS

2.1. CO;Methanation

French chemists Paul Sabatier and Jean-
Baptiste Senderens studied the thermochemical
CO2 methanation reaction since 1902. This
reaction involves the catalytic conversion of CO:2 to
methane at high temperatures, utilizing a specially
prepared catalyst and reacting it with hydrogen. An
ongoing debate surrounds the pathway of synthetic
methane formation during CO2 methanation. The
argument hinges on whether a CO intermediate is
formed in the process [4, 9]. Two proposed
pathways exist: some scholars propose that

methanation  occurs  directly through the
hydrogenation of CO2 to methane (see equation 1),
while others suggest that a CO intermediate is first
formed through a reverse water gas shift (RWGS)
reaction. Subsequently, this CO reacts with
hydrogen to produce methane (equations 2 and
3).However, the mechanism that involves the
intermediate conversion to CO has been the most
widely investigated [4].

The equations of reaction for the one-step and
the two-step processes are given in equations 1, 2,
and 3.

CO; + 4H,CH4 + 2H0 Q)
CO; + Hye> CO + H,0 2
CO + 3H,oCHg4 + H,0 ©)

In the design and implementation of the
Sabatier reaction, understanding thermodynamics
is crucial. The CO2 methanation reaction is highly
exothermic, hence, operating at high temperatures
can lead to reactor overheating, soot formation,
and catalyst deactivation due to sintering [2, 22].
High temperatures shift the thermodynamic
equilibrium towards the reactant side, resulting in
lower CO2 conversion, methane selectivity, and
yield.Conversely, operating at lower temperatures
favours the exothermic process and enables the
achievement of optimal CO2 conversion, methane
selectivity, and yield of up to 100% [15, 23, 24].
However, low temperatures pose kinetic limitations
because reaction rates are temperature-dependent
[25]. Special low-temperature catalysts are
required to overcome these kinetic barriers and
increase reaction rates [26]. Avoiding temperatures
above 550°C is advisable in the Sabatier process
to prevent catalyst deactivation through sintering.

Operating at high pressures is favourable for
achieving high CO2 conversion, methane
selectivity, and yield. Additionally, the H2/CO2 molar
ratios impact process performance, with higher
ratios, especially above stoichiometric values,
promoting higher CO2 conversion while reducing
carbon deposition [27].JUrgensen et al. [28] found
that higher pressures raise the temperature at
which carbon deposition occurs. Their results
showed carbon deposition at 365°C at 1 bar
pressure but the deposition increased at 515°C
when the pressure was raised to 11 bars.

2.2. CO,Methanation Feedstock Sources

In the production of synthetic methane through
CO2 methanation, the source of CO: and H:
significantly  affects the quality of the
methaneproduced[29].CO2 can be sourced from
power plants, industry, biomass, or air, while
hydrogen is mainly produced through water
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electrolysis, which is recommended for power-to-
gas projects.CO:z recovery methods vary based on
the source, as impurity levels affect project
costs[30]. Industrial sources offer higher CO:2
concentrations, making capture more cost-effective
than power plants[31]. Air has the lowest CO:
concentration and requires more advanced
technology for extraction.CO2 capture from power
plants can occur at different combustion stages:
pre-combustion (higher CO2 concentration), post-
combustion (lower CO2 concentration, with
impurities), and oxy-fuel (very high purity but higher
oxygen requirement)[32]. Oxy-fuel yields purerCO:
but at higher capture costs. After CO2 capture,
separation methods such as absorption,
adsorption, chemical looping, membranes, and
cryogenics are employed. Costs depend on the
source, capture technique, power source, and
process design [31].

Hydrogen for CO2 methanation can come from
coal gasification or water electrolysis. Electrolytic
hydrogen, produced using renewable energy
sources, aligns with sustainability goals but has
high costs. Environmental regulations limit fossil
fuel hydrogen use, focusing on electrolytic
hydrogen [15]. Electrolytic hydrogen production is
complex and energy-intensive and faces
challenges such as low efficiency, material costs,
and power density issues. Proper design and
resource optimization are crucial for electrolytic
hydrogen production. Three main types of
electrolysers exist: alkaline, polymer electrolyte
membrane (PEM), and solid oxide electrolyser
(SOE). Alkaline electrolysis has 77% efficiency,
expected to reach 82% by 2050. PEM technology
offers flexibility but uses expensive catalysts. SOE
operates at high temperatures, potentially reaching
86% efficiency in the future [15].

2.3. CO, Methanation Reactor

CO2 methanation is an exothermic reaction,
which makes effective temperature control a critical
consideration in the reactor design. Poor heat
management can lead to temperature spikes within
the catalyst bed which can exceed thermodynamic
limits, and cause issues like hot spots, stress on
construction materials, and catalyst sintering[33].
Elevated outlet temperatures can also limit CO2
conversion due to thermodynamic equilibrium,
resulting in a gas composition that does not meet
natural gas grid specifications[34].

Catalytic methanation has been extensively
explored in Power-to-Gas (PtG) applications. In this
regard, the reactors are typically operated at
temperatures ranging from 200 to 550°C and
pressures from 1 to 20 bar. While methanation
processes have long been used in industrial
ammonia production and synthetic natural gas

(SNG) generation following the oil crises of the
1970s, their application in Power-to-Gas processes
is more complex due to the smaller plant sizes and
intermittent or dynamic operation [35].

CO2 methanation reactors are generally
categorized into two-phase and three-phase
reactors, with two-phase reactors being more
common for commercial applications. Various
designs are used for two-phase reactor systems,
including fixed-bed reactors (adiabatic or cooled),
structural reactors, and fluidized-bed reactors [34].

Fixed-bed reactors, especially adiabatic fixed-
bed reactors (AFBR), are frequently employed for
CO2 methanation. In these reactors, catalyst
particles are packed in a stationary bed, and
reactant gases flow through the bed. AFBRs are
often operated at high pressures (above 20-30
bars) to favour thermodynamically favourable CHa
production, but this can lead to high temperatures
in the first reactor, necessitating thermally stable
catalysts. However, these high temperatures can
decrease methane production and potentially lead
to local hot spots, reducing catalyst activity. AFBRs
also suffer from low flexibility and high-pressure
drop [35].

Several approaches have been developed to
mitigate the temperature increase in the catalyst
bed due to the exothermic nature of methanation.
These include gas recirculation, catalyst dilution
with inert materials, and intercooling stages
between fixed-bed reactors. While effective, these
solutions require additional equipment, increase
reactor volume, and add complexity to the overall
process, driving up construction and operating
costs [36].

However, fixed-bed reactors constitute the
highest level of technological maturity for CO:2
methanation. Leading suppliers in this field, such
as Air Liquide (formerly Lurgi), Haldor Topsge, and
Johnson Matthey (Davy Technologies), offer
adiabatic reactor-based methanation technologies
[35]. However, it's important to note that the high
pressure and temperature requirements of
adiabatic fixed-bed reactors can result in significant
construction and operating costs, including
increased equipment wall thickness and higher
compression power demands [37]. The maximum
operating Gas Hourly Space Velocity (GHSV) for
adiabatic fixed-bed reactors in technical plants
typically falls within the range of 2000-5000 h-1[36].

Cooled Fixed Bed Reactors (CFBR) represent
another technology used in  methanation
applications. CFBR systems typically consist of
multi-tubular fixed-bed reactors or plate reactors. In
comparison to Adiabatic Fixed Bed Reactors
(AFBR), CFBR technology focuses on reducing the
temperature gradient between the gas inlet and
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outlet by incorporating heat transfer from the
methanation reactor to a cooling medium [37].
Common cooling mediums include pressurized
boiling water, steam, or thermal oil. However, even
with cooling, temperature gradients persist within
the catalyst bed, and hot spots cannot be
completely avoided due to limited thermal transfer
between the reaction zone and cooling surfaces.
Additionally, challenges arise during catalyst
conditioning and loading, which can lead to the
formation of gas preferential paths due to potential
heterogeneous catalyst distribution [36].

CFBRs are generally more complex and
expensive compared to AFBRs [36] but the overall
unit cost may not necessarily be higher than that of
AFBR processes. Typically, two reactor stages are
required to achieve the desired CO2 conversion[34,
36]. Alternatively, designing longer reactors to
ensure complete CO2 conversion is an option, but
this can result in the formation of hot spots and
gradual catalyst deactivation, potentially causing
variations in SNG quality and production [38].

Several companies offer fixed-bed reactor
technologies on the market. For example, MAN
provides a cooled fixed-bed reactor with molten salt
cooling, Outetec offers a staged fixed-bed reactor
with intermediate cooling, and Etogas utilizes fixed-
bed or plate reactors with steam cooling [38].

Structured  fixed-bed reactors represent
technologies in development aimed at addressing
the limitations of AFBRs, including temperature hot
spots and high-pressure drops. These structured
reactors and micro-reactors have certain
drawbacks, such as high manufacturing costs and
scalability challenges. Examples of structured
reactors include honeycomb, microchannel,
sorption-enhanced, and membrane reactors [36].

Microchannel reactors (MCRs) have been
developed to enhance heat transfer and minimize
hot spot formation within the methanation reactor
by increasing the exchange area. MCRs consist of
numerous channels with diameters in the micro-
meter range. A microchannel CO: methanation
pilot reactor was tested at the Laziska power plant
in Poland [39], divided into two stages, and
operated at pressures of around 1-3 bars and
temperature of 300 °C. The maximum CO:
conversion achieved was 98%, resulting in SNG
composed of methane (82%), hydrogen (13%), and
carbon dioxide (5%). Industrial upscaling remains a
significant challenge for MCRs, primarily due to
their high costs [40]. It's worth noting that once the
catalyst is deactivated, the entire microchannel
reactor must be replaced. Additionally, a
temperature gradient of approximately 260°C
gradually moves within the reactor with catalyst
deactivation, promoting catalyst sintering [37].

Fluidized Bed Reactors (FBRs) represent
another technology used in  methanation
applications. These reactors involve the

suspension of catalyst particles in the reactor
through upward-flowing gases, mimicking fluid-like
behaviour. Catalyst particles are fluidized by the
gas flow, ensuring uniform contact with reactants.
CO:2 and H:z are introduced, and methane forms on
the catalyst surface [41]. One of the key
advantages of FBRs, when compared to other
catalytic technologies, is the nearly homogeneous
temperature distribution in the catalytic bed, owing
to their exceptional heat transfer characteristics. To
manage the exothermic nature of methanation,
internal heat exchangers can be integrated into the
bed to precisely control the reaction temperature
[42]. As a result, hot spots and catalyst sintering
are entirely avoided. Due to the high heat transfer
coefficient between the fluidized bed and tube wall
(typically ranging from 100 to 400 W/m?2-K) [41,42].
The size and capacity of internal heat exchangers
are significantly smaller than those for CFBR [36].
Efficient solid mixing is also achieved in fluidized
beds, which plays a pivotal role in the observed
behaviour.

One notable feature of FBRs is their high
flexibility concerning inlet flowrate (1-4 factor),
essential for PtM applications to manage variations
in inlet flowrate. However, designing FBRs can be
challenging due to the need to provide sufficient
exchange area between the fluidized bed and the
exchanger tubes to handle heat generated by
exothermic reactions. The gas volume contraction
during methanation reactions necessitates low bed
diameters to ensure bed fluidization, imposing
stringent design constraints on internal heat
exchangers. To address this, options include
increasing fluidized bed height or reducing catalyst
particle size [41]. FBRs can also be operated at
high temperatures (>450 °C) to enhance the heat
transfer coefficient and limit the amount of heat to
be extracted. However, operating at such high
temperatures is thermodynamically unfavourable
for CO2 conversion. Alternatively, FBRs can be
operated at low pressure (2-5 bar) to increase the
volumetric flowrate and enhance the heat
exchange area. This approach also reduces overall
gas compression costs since pressurization occurs
with the product gas (which has a much lower
volumetric flowrate than the reactant gas) rather
than the inlet gas. While low pressure is
unfavourable for the methanation reaction,
thermodynamic analysis indicates that pressure
has minimal impact on methanation at low
temperatures (250-350 °C) [27].

Three-phase methanation represents a distinct
catalytic process characterized by highly dynamic
operability. Slurry Bubble Column Reactors
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(SBCR) serve as a prime example of a three-phase
reactor for CO:2 methanation. SBCRs achieve
effective heat management with homogeneous
temperatures throughout the methanation reactor.
In SBCRs, the catalyst is suspended in a liquid
solution. However, it's essential to limit the
catalyst's concentration to maintain an adequate
gas-liquid mass transfer rate [34], which is the rate-
limiting step in SBCRs. As catalyst dilution
increases, reactor volume expands compared to
fixed bed and fluidized bed reactors. SBCR
performance has been demonstrated to
significantly improve with higher pressures [34].
Consequently, achieving high CO2 conversion in
SBCRs demands substantial compression costs.
However, the Capital Expenditure (CAPEX) of this
technology is notably lower than AFBRs or CFBRs,
primarily because it requires less equipment [43].

2.4. Aspen HYSYS Modelling Concepts

Aspen HYSYS is a powerful process simulation
software with a wide range of applications in
chemical engineering and sustainable energy
production. When utilized for CO2 methanation, it
provides critical capabilities for modelling and
optimisation. HYSYS offers a utility environment to
define and tailor reaction Kkinetics models for
CO:zmethanation, allowing precise control over
reactants, reaction rates, and methane formation.
The predictions of the behaviour of the reactants
under varying temperature and pressure conditions
are achieved through established thermodynamic
models and databases[44]. Aspen HYSYS
facilitates the creation of detailed process flow
diagrams (PFDs) for CO2 methanation reactors,
enabling comprehensive simulations ranging from
feed input to product separation. Engineers can
utilize Aspen HYSYS to transition from laboratory-
scale processes to industrial-scale operations[45].
It aids in the design of larger reactors, efficient heat
management, and ensures compliance with safety
considerations. Aspen HYSYS offers users the
possibility to choose from its inbuilt reaction library
which includes conversion reactions, equilibrium
reactions, Gibbs reactions, kinetic reactions,
heterogeneous catalytic reactions, etc. However,
reactions more akin to CO2 methanation include
the kinetic and the heterogenous catalytic reaction
types[45].

Aspen HYSYS also supports comprehensive
cost estimation and economic analysis, including
capital expenditures (CAPEX) and operating
expenses (OPEX). This capability is necessary for
evaluating the feasibility and profitability of CO:2
methanation projects.

3. METHODOLOGY

The methodology comprises Process modelling
and simulation, RSM modelling, and the ANN

modelling. The process simulation was used to
build the process model for the hydrogenation of
COz2 to methane. The process results subsequently
served as input for the RSM and ANN modelling.

3.1. Process Modelling and Simulation

3.1.1. Kineticmodel

Kinetics are given for each of the catalysed
reactions that occur in the methanation process.
The two-step methanation process comprises the
intermediate production of CO and the subsequent
hydrogenation of CO to methane. This s
summarised in the equations of reaction given in
equations 4 and 5 respectively.

CO +3H, & CH, + Hy0 AH,egx = —205 kd/mol (5)

Equation 4 relates to the reversed water gas
shift reaction (RWGS) while equation 4 is the CO
methanation reaction. The overall process is
exothermic and is investigated at temperature
ranges of 300°C to 500°C and pressures of up to
100 bars.

The kinetic model used for the process
simulation of methane production through CO:2
methanation is that given by Xu and Froment [46]
over Ni/MgAIl204 catalyst. This model is presented
following the  Langmuir-Hinshelwood-Hougen-
Watson (LHHW) rate expression, the rate constant
and the adsorption parameters are defined by the
Arrhenius type expression. The mechanism of the
CO2 conversion considered is the indirect route
wherein CO: is first converted to CO by reversed
water gas shift reaction and the subsequent
hydrogenation of the CO to methane. This two-step
process is performed in separate reactors.

The kinetic model given by Xu and Froment
[46] for Ni/MgAI204 catalyst is given as:

k1 PcoPH,0
—— \PHPCO, —qu
— PH,
R, = 2 (6)

KH,0
1+KcoPcotKH,PH, tKCH4PCH, YK H, 0 Py
2

k1 (pz_sp pCH4pH20)
—25\PHPCO™
p%‘li 2 Kqu

R, =

()

2
KH,0
1+KcoPco+KH,PH,YKCcHPCH,HKH,0 ?H
2

Where Ri1 and Rz represent the kinetic rate
model for the RWGS reaction and the CO
methanation reaction respectively.

The equilibrium constants K.,,and K., are
given as:

(8)

+30.114) 9)

Keqr = exp (5 — 4.036)

—-26830
Keqz = exp( T
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The kinetic factor (rate constant) is expressed
using Arrhenius and Vant Hoff's expression in
Equation 10 and 11

ki = kyoexp (—244) (10)

RT

K; = Kjgexp (-=L) for j= A, B,and P (11)

k; is the rate constant, mmol-min-bar?5

k; o is the pre-exponential factor, mmol-tmin-bar-
2.5

K; is the adsorption rate constant, mmol*min-
bar-25

K;, is the pre-exponential factor for the
adsorption rate constant, mmol-*min-bar-25

AH; is the adsorption enthalpy change, kJ/mol

T is the temperature in kelvin

The Kkinetic parameters corresponding to the
pre-exponential factors, the activation energy, and
the adsorption parameters are given in Table 1

The CO2 conversion, methane selectivity, and
yield were calculated using the following equations.

€O, Conversion: Xco,(%) = Mx 100(12)
COz,in

VCH4,out

CH, Selectivity: Scy, (%) = x 100(13)

VcHyout tVco,out

Table 1. Kinetic parameter for Ni/MgAl.O4 catalyst

Parameter Value Unit
k1 5.43E2 Molbarg©-°s1
E: 67.13 kJ/mol
k2 1.1736E12 Molbarg©-°st
E> 240.1 kJ/mol
KCO 8.23E-5 -
AHCO -70.65 kJ/mol
KCHa 6.65E-4 -
AHCH4 -38.28 kJ/mol
KH2 6.12E-9 -
AHH: -82.9 kJ/mol
KH20 1.77E5 -
AHH20 88.68 kJ/mol

3.1.2. Process Simulation

The process simulation was conducted using
Aspen HYSYS V11 software and Peng Robinsons
fluid property package. The simulation begins with
the methanation unit where the CO2 and hydrogen
are reacted to produce methane by an indirect CO
pathway. First CO2 was converted to CO and then
the CO was methanated. Methane upgrading
followed the methanation process where high purity
methane was obtained by separation process
which removed impurity gases from product gases.

- VCHy,0ut
. 04) = 4 . )
CH, Yield: You, (%) Vcoy.in x 100 (14) The synthetic methane production block
diagram is given in Figure 1
CO2
Recovered
CO2
Carbon
capture v
storage
—3| Feed- > .- |—| Upgrading SNG  |—»| Grid/
stock Methanation Storage End
Mix User

Hydrogen | H:2
Storage

Figure 1. Block diagram of the synthetic methane production process

Sensitivities enable optimization of the process
by investigating the effects of changes in several
process parameters on the simulation results. This

will enable the determination of the best conditions
to operate the plants based on the results obtained.

The input data used in this simulation includes
the feed data, the reactor data, and catalyst data

7 ZASTITA MATERIJALA 66 (2025) broj



N. C. Nwachukwu et al. Response surface methodology and artificial neural networks ...

Table 2. Input data used for the simulation Table 3. Reactor and catalyst data

Parameter Value Unit Parameter Value
Inlet flowrate of Hz2 3494 kgmol/hr Length of tube 12.07 m
Inlet pressure of Hz 40 bar Number of tubes 67500
Inlet temperature of Hz 30 °C Diameter of tube 0.025m
Inlet flowrate of CO2 1494 kgmol/hr Wall thickness 0.005m
Inlet pressure of COz 40 bar Tot.al Rea.ctor tube Volume 400 m3
Void fraction 0.45
Inlet temperature of CO: 30 °C Solid density of catalyst 1010 kg/m?3
Diameter of catalyst particle 0.001 m

The reactor and catalyst parameters are given
in Table 3

=y
e o

- g

=
. etharaton | 0
| A ] —7
] 4 § ]
2 £l

MIk-100

Figure 2. Process flow diagram (PFD) of the methanation unit

3.1.3. Simulation Description Because the kinetics were expressed as LHHW
The methanation process comprises the €xpression, a heterogenous catalytic reaction type

methanation and the upgrading. In HYSYS, a plug  Was selected for the reactions. The methanation
flow reactor was used for the simulation because it ~ Process flow diagram (PFD) is given in Figure 2
mostly represents a multi-tubular fixed-bed reactor.

Table 4. Material and energy stream description of the PFR

Stream Description T,0C P, bar Total Duty, kW

1 Hydrogen 30 30 3486.5 -

2 CO2 40 26.55 1494.2 -

3 Mixed stream 30 40 4980.7 -

4 Reactor inlet 1000 40 4980.7 -

5 RWGS outlet 813.3 40 4980.7 -

6 RSMR outlet 900 40 3372.9 -

7 Warm water 30 1.01 200000 -

8 Hot water 98.55 0.9632 200000 -

9 Cooled reactor product 32 39.95 3372.9 -
10 Separated water 32 39.95 1849.7 -
11 Raw synthetic methane 32 39.95 1521 -
12 Compressed SNG (to dehydration) 75.76 62 1521 -
Q1 Heater duty - - - 4836
Q2 Heat removed from reactor - - - 4643
Q3 Compressor duty - - - 608.7
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The methanation process begins with the
introduction of the feedstock CO2z(stream 1) and
hydrogen (stream 2) from two lines at 40 bar
pressure and 30°C temperature respectively. A
mixer was placed upstream of the feedstock inlet to
mix the incoming stream and send the mixed
stream (stream 3) to a heater. The heaterraises the
temperature of the mixed stream from 30°C to
1000°C pressure suitable for the reactor
environment. The RWGS reactor was operated
adiabatically while the CO methanation reactor was
operated isothermally with appropriate heat
management. An upper-temperature limit of
1028°C was set for the CO methanation reactor to
avoid reactor overheating and catalyst deactivation
by sintering. The resulting products from the
reactors comprise methane, CO2, CO, hydrogen,
and water which have to be processed to remove
impurites and obtain methane of higher
purity.Table 4 shows the material and energy
stream description of the PFR.

3.2. RSM Modelling

The sensitivity results obtained from the
process simulation served as experimental data
which were used as input data for the RSM
modelling. A Box-Behnken design (BBD) was used
to develop the experimental plan as was
implemented using Design Experts. The BBD was
chosen for this study because it is suitable for
modelling quadratic response surfaces which are
typically encountered in most chemical engineering
processes. Four variables (temperature, pressure,
H2/CO: ratio, and CO fraction)that were observed
to influence methane production were investigated.
Furthermore, two output variables: CO2 conversion
and methane vyield were investigated. 30
experimental runs were produced by the BBD
which was used for the modelling. Various
regression analysis models were tested to select
the most accurate one approximating the
experimental data. The two-factor interaction (2Fl)
model performed best for CO2 conversion, while
the quadratic model was optimal for methane yield.
These models were chosen based on statistical
parameters such as R?, adjusted R?, predicted R?,
standard deviation, and coefficient of variance
(COV). Multiple regression analyses enabled the
fitting of these models to the experimental data,
allowing the estimation of responses from
independent variables using the general equations
given below:

The general form of the 2FI regression model is
given as:

y=a,+X ax + X, Z? Qiji<pXiXj T € (15)

The general form of the quadratic regression
model is given as:

k k k
Yy =a, + Z a;x; + Z Z aij(i<j)xixj +
i=1

=1
+3k agxt+e (16)

Where x;,x;, x;, are the input variables and a;,
a;j, a;,and a;; are the coefficient of each of the
terms, a, is the offset and e is the residual or error
term, k is the number of input variables.

3.3. ANN Modelling

MATLAB software was used to develop
artificial neural network (ANN) models to determine
the relationship between the input variables and
the output data and perform predictions for
methane production. The ANN model was
designed and modelled utilising data from process
simulation sensitivity analyses results. The ANN
model  was built  in MATLAB using
MATLAB'snntool. ANN model in MATLAB has
several network architectures, training models,
transfer functions, and optimal number of neurons.
This ANN model implemented in this study
comprises feed-forward neural network architecture
based on the back propagation learning principle.
The selected training model was the Levenberg-
Marquardt (trainim) while the transfer function was
the tangent sigmoid (TANSIG) because they have
demonstrated higher accuracy during predictions in
literature. The topology of the multilayer perceptron
(MLP) ANN structure input consists of five
parameters, a hidden layer consisting of 15
neurons, and an output. The four-parameter input
comprises temperature, pressure, H2/CO: ratio,
and CO fraction. The ANN model was trained
distinctively for the CO2 conversion and the CHa
yield. This was done because it provided higher
performance than when the two outputs were
combined in a single training model.Thus, the first
ANN model training comprised CO2 conversion
(R1) as the output while the second ANN training
comprised CHs yield (Rz2) as the output with the
same input factors for both trainings. The ANN
architecture is given in Figure 3.

Several trainings of the model were
accomplished and the run with the best
performance was selected. The criteria for

selection were based on the R-value, the R? value;
mean squared error (MSE). Other statistical test
parameters such as root mean squared error
(RMSE), standard deviation; mean absolute error
(MAE), and mean absolute percentage error
(MAPE) were calculated to assess the accuracy of
the prediction.
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Output Layer

B
]

Hidden Layer
Input
d |
a b
15

1

Figure 3. ANN architecture for each training

3.4. Optimisation

The CO:2 conversion and CHs vyield were
separately optimised using the RSM model and
ANN model coupled with a genetic algorithm (GA).
Thus, two optimisations were performed, RSM
optimisation was performed wusing a built-in
optimisation algorithm in Design Experts software
while ANN model optimisation was done using the
ANN fitness function coupled with GA toolbox in
MATLAB.

3.5 Performance Metrics

Some statistical metrics are used to assess the
performance of the RSM and ANN models
developed. These comprise the coefficient of
determination (R2), the mean-square error (MSE),
the root-mean-square error (RMSE), the mean

absolute error (MAE), the mean absolute
percentage error (MAPE) and the standard
deviation. The formulas for these statistical
parameters are given below
R2= §?=1(xa,l‘_xp.l‘)22 (17)
Yic1(Xpi~xa,ave)
1 2
MSE = -3 (%pi — *a,) (18)
1 2
RMSE = \/;Z’;l(xp,i—xa,i) (19)
1
MAE:Z ?=1|(xa,i_xp,i)| (20)
120
100
X 80
S 60
©
o
a 40
20
0
0 100 200 300

L

1
T2l (xai—xp,i)l

MAPE = 2=55=— (21)
n<~i=1 a,l
(xgi—m)?
stddev = R~ (22)

Where n is the number of experimental runs,
Xp,is the estimated values, Xa, is the experimental
values, XaaveiS the average experimental values,
xq; is the difference between the actual and
estimated value, m is the mean value of x; dataset

4. RESULTS

From the simulations performed, process
simulation results, RSM simulation, and ANN
simulation results are presented.

4.1. Process Simulation Results

The process simulation investigated the effect
of input variables such as temperature, pressure,
H2/CO:2 ratio, and CO fraction on CO2 conversion,
CH4 selectivity, and CHas yield. base process
conditions included temperature of 500°C, pressure
of 50 bars, H2/CO: ratio of 2.33 (which represent
70% mole ratio of H2 and 30% mole ratio of CO>),

4.1.1. Effect of temperature

The effect of temperature on the methanation
process was investigated for temperature ranges of
300°C to 500°C as shown in Figure 4. The effect of
temperature was investigated for CO2 conversion,
CHa4 selectivity, and yield.

—e—X_CO2
Y_CH4
S_CH4

400 500 600

Temperature, °C

Figure 4. Effect of temperature on CO, conversion, CH4 selectivity and yield for 50 bar pressure
and H»/CO ratio of 2.33
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From Figure 4, it can be observed that CO:
conversion and CHas vyield increased with an
increase in temperature while the CHs selectivity
decreased with an increase in temperature.
Although in overall, methanation reaction is a net
exothermic process, the initial RWGS reaction
wherein the CO2 was converted to intermediate CO
was however slightly endothermic as seen in
equation 1. According to Le Chetalier's principle,
an increase in temperature favour endothermic
reaction by facilitating the forward reaction for
producing the products. The CO2 conversion in the
RWGS reaction was favoured at higher
temperatures. Similarly, the CHs yield also has
similar temperature dependence as the CHayield
increased with an increase in temperature. In the
low-temperature regions (below 400°C), the values
for the CHa yield coincided with the values of CO:2
conversion for each temperature. This indicates the
high selectivity of the nickel-based catalyst at low
temperatures. As can be seen, the selectivity was

80
70

60

(%2
o

higher than 95% for temperatures below 400°C, but
as temperature increased, the selectivity began to
decrease. A steep decrease in the CHa4 selectivity
was observed in the temperature ranges of 400°C
to 500°C. The lower selectivity of CH4 at higher
temperatures was due to the low conversion of CO
to methane as the temperature was increased.
Note that the CO methanation reaction is a highly
exothermic process and proceeds to favour the
production of the reactants at higher temperatures.
Thus, slowed conversion of CO to methane at
higher temperatures decreased the selectivity of
methane and also explained the reason why the
CHg4 yield became lower than the CO2 conversion
in the higher temperature ranges (400°C to 500°C).

4.1.2. Effect of Pressure

The effect of pressure on the CO2 conversion,
CHa4 selectivity, and vyield was investigated for
pressures ranging from 50 bars to 100 bars, as
shown in Figure 5

Products, %
o
o

—e—X_C02
20 ——0 00O Y_CH4
20 S_CH4
10
0
0 20 40 60 80 100 120

Pressure, bar

Figure 5. Effect of pressure on CO; conversion, CH4 selectivity yield at 500°C, and H2/CO; ratio of 2.33

From Figure 5, it can be observed that
pressure did not have a significant effect on the
CO:2 conversion. The COz conversion was almost
constant with pressure increase as only minimal
increase was observed. Meanwhile, the CHa
selectivity and CH4 yield decreased with increasing
pressure. Moreover, similar to COz, conversion the
effect of pressures on CHa yield was less profound.
The RWGS was a slightly endothermic reaction
and would favour the production of products at
higher pressures which explains the reason for the
slight increase in COz conversion at higher
pressures. Conversely, CO methanation was
responsible for the production of methane is
exothermic and prohibits the formation of methane

at higher pressures which explains the low
methane yield and selectivity at higher pressures.
Note that selectivity decreased steeply as pressure
was decreased. Selectivity decreased from 74.1%
at 50 bars to 55.6% at 100 bars at a constant
temperature of 500°C.

The steep decrease in selectivity as pressure
decreases can be explained by the shifting of the
reaction equilibrium. At lower pressures, the
equilibrium favours the formation of fewer products,
leading to higher CHas selectivity. This shift in
equilibrium is especially notable at the high-
temperature condition of 500°C. Lower pressures
allow the reverse reaction (methane decomposing
back to CO) to dominate, reducing the overall
selectivity for methane.
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4.1.3 Effect of H2/CO2 Ratio

The H2/CO: ratio was determined by dividing
the molar flow rate of Hz by the molar flowrate of
COs.. Investigation of the effect of the H2/CO2 ratio
is important because the ratio of the molar flowrate
of the feedstocks affects the species available for
reaction. If there is not enough hydrogen gas to
sufficiently hydrogenate the CO2 and CO, then the
conversion of CO2z and yield of methane would be

120
100

80

60

Product, %

; L

20

0 0.5 1 1.5 2

limited. Theoretically, 4 moles of Hz are required for
every mole of CO: for the general equation of the
methanation reaction. However, in a practical
sense, the effect of the H2/CO: ratio on the
methane product is influenced by other process
variables. Figure 6 shows the effect of the H2/CO:2
ratio on the CO2 conversion, CH4 selectivity, and
yield.

—e—X_CO2
Y_CH4
S_CH4

2.5 3 3.5 4 4.5

H2/CO2 Ratio

Figure 6. Effect of Ho/CO- ratio on CO; conversion, CH4 selectivity and yield at 50 bar pressure
and 500°C temperature

It can be observed from Figure 6 that the CO2
conversion, CHas4 selectivity, and CHs vyield
increased with an increase in H2/COz ratio. This is
attributed to the fact that at higher values of the
H2/CO: ratio, more hydrogen was available for the
hydrogenation of CO2 and CO to form CO via
RWGS and CH4 via CO methanation respectively.
However, it can also be observed that as the
H2/CO: ratio increased the difference between the
values of the CO2 conversion and the CHa yield
became smaller. The CO2 conversion increased
from 26.43% at H2/CO: ratio of 1.5:1 to 42.14% at
H2/CO2 ratio of 4:1. Similarly, the CHs yield
increased from 13.37% at H2/CO: ratio of 1.5:1 to
40.14% at H2/CO:2 ratio of 4:1, while the CH4
selectivity increased from 50.59% at H./CO: ratio
of 1.5:1 to 95.25% at H2/CO: ratio of 4:1. However,
there would be a saturation point where further
increasing the H2/CO2 ratio might not significantly
increase methane yield. Judging from Figure 6, the
saturation point is at values slightly higher than the
theoretical H2/COz ratio of 4:1.

4.1.4. Effect of CO Fraction

Thesource of the feed CO2 might contain some
fractions of CO or in some cases, CO may be

intentionally introduced into the feed. This is
usually the case in mixed CO/CO2 methanation. It
is important to investigate the effect of fractions of
CO in the feed on the CO: conversion, CHa
selectivity, and yield. Figure 7 shows the effect of
several fractions of CO in the feed ranging from
0.06 to 0.12 on the CO:z conversion, CHa
selectivity, and yield at temperature, pressure, and
H2/CO: ratio of 500°C, 50 bars and 2.33:1.

From Figure 7, it can be observed that CO:
conversion decreased with an increase in the
fraction of CO in the feed. This is because as the
fraction of CO in the feed increases, less CO2
would be available for conversion. Meanwhile, the
CHa4 yield and selectivity also showed a decreasing
trend with an increase in the fraction of CO in the
feed from 0.06 up to 1.0. At a CO fraction of 1.2,
the CH4 yield and selectivity were observed to
suddenly slightly increase. The interpretation of this
is that the rate of CO accumulation did not
correspond to the rate of CO methanation in the
formation of methane. More CO accumulated in the
reactor as the CO fraction increased and the rate of
CO methanation was not able to meet up with the
accumulated CO at the reaction conditions of
pressure, temperature, and H2/CO: ratio.
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Figure 7. Effect of CO fraction in feed on CO, conversion, CH4 selectivity, and CH4 yield

4.2. RSM Modelling Results

The results of the RSM modelling are
presented and discussed in this section. These
results are shown in Table 5 and include the actual
output from the process simulation and the
corresponding predicted output responses from
RSM for the input variables (which are the
temperature, pressure, H2/CO: ratio, and CO
fraction).For the process to be optimised, an RSM
model had to be developed first. This was

accomplished by fitting the experimental data (from
process simulation) to the RSM model. The
regression model that gave the best fit to the actual
data was selected. The 2FI model gave the highest
fit to the actual data for CO2 conversion while the
quadratic model gave the best fit to the actual data
for CH4 yield and were selected respectively due to
their best prediction accuracy. The equation for the
2FI model generated by RSM for the CO:
conversion is given as:

€O, Conversion = +17.4+ 163X, + —0.7314X, + 4.34X, — 2.74X, — 0.0991X,X, —

—4.14X,X; — 0.8329X,X, — 0.32X,Xs — 0.385X,X, — 0.505X5X,

(23)

As can be seen from the equation, the CO2 conversion was influenced by temperature, pressure,

H2/CO: ratio, and CO fraction.

The equation for a quadratic model for the CHa yield is given in equation 23.
CH4Yield = +31+ 7.33X; +0.1667 X, + 9.75X; — 1.08X, — 2.25X,X, + 11.0X, X5 —

—3.75X, X, + 4.5X,X5 — 0.75X,X, + 1.75X5X, — 2.25X2 — 3.25X2 — 3.87X% — 8.62X2

Equations 23 and 24 in terms of actual factors
can be used to make predictions about the
response for given levels of each factor. To
achieve this, the levels must be specified in the
original units of each factor both for the input
parameters and the response.

The analysis of the performance of the models
is given in Table 6. For the COz conversion, the
predictive capacity of the model was high
(R?=0.9949, adjusted R?=0.9922 and predicted
R2=0.9835). R? values greater than 0.8 are usually
an indication of a significant fit between
experimental and model-predicted results. The
coefficient of variance (CV) was 5.64% which is low
and indicates a good reliability of the experiments.

(24)

Figure 8 shows the actual vs. predicted
response for the reduced cubic regression model.

The parity plot in Figure 8a and Figure 8b
shows the relationship between the actual and
predicted responses corresponding to the CO:
conversion and CHa yield. Figure 8a shows that the
actual and predicted output response for the CO2
conversion were aligned perfectly at the 45° line
indicating very good regression and agreement
between the two data sets. However, figure 8b
shows the actual and predicted output response for
the CHayield indicating a fairly good agreement
with each other although not as good as the CO:
conversion response.The data points were
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clustered around the 45° line, however, with noise, there is still an acceptable level of
notable distance from the line indicating some agreement between both data.
Predicted vs. Actual

Predicted
|

-10 4] 10 20 30 40 50

Actual (a) CO2 Conversion

Predicted vs. Actual

50 —

30 —

Predicted

20—

Adtual (b) CH, Yield

Figure 8. Parity plot of actual vs. predicted values for R; and R;
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4.3. Results for ANN Modelling

The ANN neural network model was used to
determine the relationship between the input
factors and the output response. The selection of
the best neural network for the ANN analyses was
based on the performance of the best transfer
functions, training algorithm, network, and optimal
number of neurons. The training was performed
severally and the best trained results were used to
represent the model. The performance of these
variables was assessed based on the R? values,
mean absolute error (MSE), root mean squared
error (RMSE), mean absolute error (MAE), and

Training: R=0.98534 Validation: R=0.99912

~
oy ©  Dala I5 <Y O Data
+ 45 Fit S 45 Fit
P o ¥Y=T + ¥=T
2 40 B 40
o
® 35 2
T 35
o e
8 & 30
S 25 S e
n I
Y20 ! &
5 520 °
o
5 1 g' 15
O 10 &
£ ST
10 20 30 40 50 10 20 30 40 50
Target Target
Test: R=0.99254 All: R=0.98873

O Data |

O Dats
= Fit

Fit
Y=T

o
=]

e ¥=T

0.89*Target + 3
&
S
=
o

w

=3
w
=]

Qutput ~= 0.89*Target + 2.7
[
(=]

Output ~
3

=

10 20 30 40 50 10 20 30 40 50
Target Target

(&) R values for CO, conversion output training

mean absolute percentage error (MAPE). The
highest R? value and the lowest MSE, RMSE,
MAE, and MAPE values indicate better predictions
corresponding to the modelling factors. The R-
value from the ANN model corresponding to the
selected trained model is shown in Figure 9.

Figure 9 shows the R? values corresponding to
the two ANN trainings performed. The Overall R?
values for the CO:2 conversion and CHs yield
training were 0.9901 and 0.98873 respectively. It is
seen that ANN gave notably high R? values which
indicate very good predictions both for the CO:2
conversion and the CHa yield.
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Figure 9. R-values for the training in ANN

Table 5 shows the values predicted by RSM and ANN models for each of the input variables and
actual output data. Table 5 shows that there is a high correlation between the actual and predicted results

for the RSM and the ANN models.

Table 5. Actual and predicted results for CO, conversion and CHa yield corresponding to RSM and ANN

modelling
Actual Data RSM Prediction ANN Prediction

H2/CO2 CO coO

T,°C | P, bar . - 2
: : Ratio | fraction ; CHa CO2 CHa CO2 i
Con\:]ersm Yield Conversion Yield Conversion CHa Yield
400 75 2.75 0.06 17.12 31.00 17.40 31.00 17.12 30.97
300 75 4 0.06 0.37 15.00 1.31 16.29 0.36 17.82
500 75 2.75 0 35.35 33.00 35.61 32.29 35.34 31.76
300 75 2.75 0.12 0.10 15.00 -2.46 15.46 0.10 15.06
300 100 2.75 0.06 0.28 23.00 0.27 20.58 0.30 23.19
400 75 1.5 0.12 10.31 8.00 10.82 5.92 8.81 8.06
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400 100 2.75 0 20.20 21.00 19.79 21.13 27.82 20.42
400 75 2.75 0.06 17.12 31.00 17.40 31.00 17.12 30.97
400 75 4 0 25.57 26.00 24.99 27.58 25.54 27.16
500 75 4 0.06 41.30 56.00 42.17 52.96 41.21 53.08
400 50 2.75 0 21.64 21.00 20.48 19.29 21.64 22.08
500 75 2.75 0.12 33.28 27.00 31.78 22.62 33.27 26.12
500 100 2.75 0.06 34.06 24.00 33.06 30.75 38.51 27.33
300 75 2.75 0 5.46 6.00 4.67 10.13 5.47 10.16
400 75 2.75 0.06 17.12 31.00 17.40 31.00 17.12 30.97
400 75 2.75 0.06 17.12 31.00 17.40 31.00 17.12 30.97
300 50 2.75 0.06 0.53 23.00 1.93 15.75 0.54 22.74
400 50 15 0.06 13.41 14.00 13.46 18.46 13.19 16.46
300 75 15 0.06 0.52 15.00 0.89 18.79 0.51 15.06
400 75 15 0 15.58 15.00 15.29 11.58 15.52 15.08
400 100 2.75 0.12 12.99 15.00 13.54 17.46 12.98 16.02
400 100 4 0.06 20.25 43.00 20.69 38.29 21.54 36.60
400 50 2.75 0.12 15.97 18.00 15.77 18.63 15.96 18.03
500 75 15 0.06 24.90 12.00 25.21 11.46 24.92 11.19
500 50 2.75 0.06 17.12 31.00 17.40 31.00 17.12 30.97
400 75 4 0.12 0.37 15.00 131 16.29 0.36 17.82
400 75 2.75 0.06 35.35 33.00 35.61 32.29 35.34 31.76
400 75 2.75 0.06 0.10 15.00 -2.46 15.46 0.10 15.06
400 100 15 0.06 0.28 23.00 0.27 20.58 0.30 23.19
400 50 4 0.06 10.31 8.00 10.82 5.92 8.81 8.06

Table 6 shows the comparison of performance metrics for the RSM and the ANN predictions.

Table 6. Performance metrics for RSM and ANN Predictions

Parameter ANN Model RSM Model
CO2 Conversion Output CH4 Yield Output CO2 Conversion Output | CH4 Yield Output
MSE 2.7671 3.2951 0.6094 8.5808
RMSE 1.6635 1.8152 0.7806 2.9293
MAE 0.5498 1.0028 0.5812 2.1650
MAPE 0.0322 0.0595 1.0936 0.1244
R? 0.9901 0.9887 0.9949 0.9219

From Table 6, it is seen that both RSM and
ANN models gave realistic predictions of the
actual/experimental data for the error metrics
considered. In terms of R? values, both RSM and
ANN gave predictions higher than 0.9 which
indicates very good predictions of the test data.
The R? values for CO2 conversion for RSM and
ANN were 0.9901 and 0.9949respectively. Thus, in
terms of CO:z conversion, the performance of RSM
and ANN relative to R? values were almost the
same with RSM surpassing ANN with minor

differences. These were within the values reported
by Sun et al., (2018) in their study on optimisation
of CO:2 hydrogenation in microchannel reactor
using ANN and RSM models. However, it can be
seen that ANN outperformed RSM when predicting
CHa yield. This indicates that ANN is a superior
predictive model for CHa4 yield. It should be noted
that CHa yield was related to much more complex
reactions that occur in the multi-tubular fixed bed
reactor. The reactions that led to CHa yield
comprised the RWGS reaction and CO
methanation reaction as opposed to the RWGS
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reaction alone which accounted for the COz2
conversion. Apparently, ANN proved a better
model for handling datasets with much more
complex data points than RSM.

In terms of MSE, RMSE, MAE, and MAPE, the
RSM outperformed ANN for Ri prediction when
considering MSE and RMSE, However, ANN
modelled results showed better performance when
considering MAE and MAPE. For Rz predictions,
the ANN showed lower errors than RSM for all
values of MSE, RMSE, MAE, and MAPE.

4.5. Optimisation of CO2Conversion and CHj Yield

Table 7 gives the summary of the optimisation
results for CO2 conversion and CHs vyield
corresponding to RSM and ANN-GA optimisations
performed.

Table 7. Optimisation results

Parameter RSM ANN-GA
Temperature, °C 500 500
Pressure, bars 84.88 78.96
H2/CO> ratio 4 4
CO Fraction 0.0483 0.0382
CO2 Conversion, % 42.3 44.56
CHas Yield, % 57.73 58.94

From Table 7, it can be seen that for both CO2
conversion and CHs yield, ANN-GA gave higher
optimised values than RSM. For the RSM
optimisation, the optimal values of temperature,
pressure, H2/CO: ratio, and CO fraction were
500°C, 84.88 bars, 4, 0.0483 respectivelywhile for
ANN-GA optimisation, the optimised values of
temperature, pressure, H2/CO: ratio and CO
fraction were 500°C, 78.96 bars, 4 and 0.038
respectively. The optimised values of temperature
and H2/CO: ratio of RSM were the same as that of
ANN-GA. The optimised values of pressure and
CO fraction for RSM were higher than that of ANN-
GA indicating that ANN-GA requires less pressure
and CO fraction to be optimised. The optimised
values of the CO2z conversion and CHa yield were
42.3% and 57.73% for RSM optimisation but
44.56% and 58.94% for ANN-GA optimisation.
Generally, the result shows that ANN-GA gave a
better optimisation prediction than RSM.

5. CONCLUSIONS

A comprehensive investigation of the process
simulation and optimisation of CO2 methanation for
the production of synthetic natural gas (SNG) has
been conducted in this study. SNG production was
simulated using Aspen HYSYS software.The
methanation process investigated focused on
output results such as COz conversion,CHa yield,

and CHs selectivity under varying process
conditions and explored the effects of temperature,
pressure, H2/CO: ratio, and CO fraction in the
feedstock on these outputs. RSM and ANN were
used to model the relationship between input
variables and output results which provided fithess
functions that were optimised using RSM and ANN-
GA. The study indicates the potential of SNG
production by hydrogenation of CO2 over Ni-based
catalysts.

The results revealed that temperature played a
crucial role in enhancing CO2 conversion and CHa
yield.  Higher temperatures favoured the
endothermic RWGS reaction, leading to increased
CO2 conversion. However, the balance between
CO and CO: in the feedstock (represented by the
CO fraction) was found to be delicate. Excessive
CO fractions hindered the methanation process,
reducing both CO:z conversion and CHas vyield.
Additionally, the H2/CO: ratio proved critical as
higher ratios facilitated higher CO2 conversion, CHa
selectivity, and yield, emphasizing the significance
of an optimal hydrogen-to-CO: ratio for efficient
methanation.

More so, the ANN-GA model outperformed
RSM in terms of prediction accuracy and
optimization. The ANN-GA model demonstrated
superior capabilities in capturing the complex
relationships between the input variables and
output responses. By leveraging the power of
artificial neural networks and genetic algorithms,
the ANN-GA model provided more precise and
efficient predictions, offering a deeper
understanding of the intricate interactions within the
methanation process.The superiority of the ANN-
GA model highlights the potential of advanced
computational techniques in optimizing complex
chemical processes.
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1ZVOD

METODOLOGIJA POVRSINE ODZIVA | OPTIMIZACIJA VESTACKIH NEURONSKIH
MREZA ZA SIMULACIJU METANACIJE CO; KORISCENJEM Ni/MgAI2O4
KATALIZATORA U VISECEVNOM REAKTORU SA FIKSNIM SLOJEM

Ova studija je istraZivala simulaciju i optimizaciju proizvodnje sintetickog metana preko
Ni/MgAI204 u visecevnom reaktoru sa fiksnim slojem. Studija obuhvata simulaciju procesa
sprovedenu koriS¢enjem softvera Aspen HYSYS, modeliranje i optimizaciju koris¢enjem
metodologije povrSine odziva (RSM) i modeliranje vestackih neuronskih mreza (ANN) koris¢enjem
softvera Design Experts i MATLAB, respektivno. U simulaciji procesa za metanaciju CO2, izvr§ene
su analize osetljivosti kako bi se utvrdili efekti temperature, pritiska, odnosa H2/CO2 i frakcije CO
u sirovini na konverziju CO2, prinos CH4 i selektivnhost CH4. RSM i ANN modeli su izgradeni
koris¢enjem podataka dobijenih rezultatima simulacije procesa za modeliranje odnosa izmedu
ulaznih promenljivih i izlaznih odgovora i izvrSenje optimizacije za RSM model i ANN model
zajedno sa genetskim algoritmom (GA). Rezultati simulacije procesa su duboko istakli uticaj
temperature na povecanje konverzije COZ2 i prinosa CH4. Vise temperature su favorizovale
endotermnu obrnutu reakciju pretvaranja vode u gas (RWGS), $to je dovelo do povecane
konverzije CO2 i prinosa CH4. Utvrdeno je da su konverzija CO2, selektivnhost CH4 i prinos
minimalno pogodeni pritiskom. Utvrdeno je da frakcija CO u dovodu ima delikatan uticaj na
konverziju CO2 i prinos CH4. Prekomerna frakcija CO je ometala proces metanacije, smanjujudi i
konverziju CO2 i prinos CH4. Pored toga, odnos H2/CO2 se pokazao kriticnim jer su visi odnosi
olaksavali vecu konverziju CO2, selektivnost CH4 i prinos, naglaSavaju¢i znacaj optimalnog
odnosa vodonika i CO2 za efikasnu metanaciju, za koji je predloZzeno da bude na vrednostima
visim od stehiometrijske vrednosti od 4:1. Stavise, ANN-GA model je nadmasio RSM u pogledu
tacnosti predvidanja i optimizacije. Model vestackih neurona (ANN) pokazao je superiorne
mogucnosti u obuhvatanju sloZenih odnosa izmedu ulaznih promenljivih i izlaznih odgovora, $to su
demonstrirale metrike performansi, uklju¢uju¢i R2 vrednosti, MSE, RMSE itd. Rezultati
optimizacije ANN-GA modela pruZili su preciznija i efikasnija predvidanja u poredenju sa RSM,
nudeci dublje razumevanje sloZenih interakcija unutar procesa metanacije.

Kljuéne reci: Vestacke neuronske mreZe, metanacija CO2, HYSYS modeliranje, metodologija
povrSine odziva, obrnuto prebacivanje vodenog gasa, IzraZavanje brzine Langmuir-Hinshelwood-
Hougen-Watson
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