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Microwave assisted synthesis of NiMn2O4 as electrode material 
for super capacitor applications 

ABSTRACT 

In this work, spinel NiMn2O4 was successfully synthesized through microwave assisted co-
precipitation method and followed by calcination at 500°C.  The crystal structure and the presence 
of functional groups in NiMn2O4 were characterized through X-ray diffraction (XRD) and Fourier 
transform infrared spectroscopy (FT-IR). The surface morphology was examined by field emission 
scanning electron microscopy (FE SEM).  From the BET analysis surface area and average pore 
diameter of the mesoporous NMO nanoparticles are calculated to be 10.513 m

2
g

-1
and 8.55nm. 

The electrochemical performance of material as electrode material for supercapacitor applications 
was analysed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The 
specific capacitance of the NMO electrode increased from 290.56 F/g to 751.57F/g with increase 
concentration from IM KOH to 6M KOH at scan rate of 5mV/s.  These results indicate spinel 
NiMn2O4 as a promising candidate for high performance energy storage applications. 

Keywords: Microwave method, spinel, NiMn2O4, electrochemical performance, specific 
capacitance 

 

1. INTRODUCTION 

Renewable, clean and ecofriendly energy 
resources are achieving foremost importance in 
order to address the global energy crisis and 
environmental pollution due to the consumption of 
fossil fuels. To fulfil this constantly increasing 
energy demands, there is a need of some portable 
and flexible electronic devices having convenient 
energy storage capacities with superior energy and 
power densities. In this regard supercapacitors, 
rechargeable batteries and fuel cells are designed 
as efficient energy storage devices to meet the 
present and future energy requirements [1].  
Among these electrochemical based technologies, 
supercapacitors attracted more attention due to 
their higher power density, outstanding cycle life, 
high specific capacitance, safe functioning, and low 
maintenance cost [2,3]. Supercapacitors have ver-
satile application in energy backup system, por-
table electronic devices and electrical vehicles [4]. 
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Supercapacitors are classified into three   
based on the energy storage mechanism.  
Electrochemical double-layer capacitors (EDLCs), 
pseudo capacitors and hybrid supercapacitors. 
EDLCs can store charge either electrostatically or 
through non-faradic process, which involves no 
transfer of charge between electrode and 
electrolyte [5,6]. Carbon based materials such as 
graphene oxide (GO) [7], reduced graphene 
oxide(rGO) [8], carbon nanotubes (CNTs) [9] and 
carbon quantum dots (CQDs) [10] belongs to 
EDLCs type supercapacitor.  Pseudo capacitors 
store charge via faradic process, which involves 
oxidation and reduction reactions take place 
between electrode and electrolyte, resulting in the 
charge transportation [11]. Conducting polymers 
and transition metal oxides RuO2, NiO, CuO, TiO2, 
MnO2, V2O5, Mn3O4, Fe2O3 and Co3O4 belong to 
these types. Transition metal oxides have been 
widely explored for supercapacitor applications due 
to their layered structure and multiple oxidation 
states.  Among the transition metal oxides RuO2 

considered to be the best pseudo capacitive 
material for supercapacitor electrodes due to very 
high specific capacitance, long cycle life, large 
potential window and remarkably high conductivity 
compared to other transition metal oxides, but the 
high cost and environmental issues limit its 
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application [12].  Hybrid capacitors consist of both 
EDLC and redox mechanism, which enhances the 
power density as well as energy density. In hybrid 
supercapacitors, both physical and chemical 
processes are responsible for charge storage, and 
they are the evolved from EDLC and pseudo-
capacitors to overcome various drawbacks of 
single mechanisms. 

Nanostructured mixed transition metal oxides 

(MTMOs) such as CuCo2O4, ZnCo2O4, and 

NiCo2O4 have gained significant attention as 

working electrode materials, since they deliver rich 

redox activity and high surface area which provide 

exposed storage surface sites and the multiple 

oxidation states of metal ions that allow efficient 

faradaic reactions [13]. Out of the different MTMOs, 

considerable attention has been centred towards 

the synthesis of spinel NiMn2O4 (NMO) as it offers 

high conductivity, outstanding electrochemical 

capacitance, high redox-active sites, and 

exceptional chemical stability for energy storage 

applications [14].  Sahoo et al. reported the Cs of 

194 F g
−1

 from NiMn2O4 at the current density of 1 

A/g[15].  Zhang et al. synthesized a porous 

NiMn2O4 by an epoxide-driven sol−gel process that 

exhibited a specific capacitance of 243 Fg
−1

 at a 

scan rate of 5 mVs
−1

 in 1 M Na2SO4 electrolyte 

[16].  Pang et al. also studied the electrochemical 

energy storage performance of porous NiMn2O4 via 

calcination of oxalate precursors, which showed a 

specific capacitance of 180 Fg
−1

 at 250mAg
−1

 

current density [17]. In the present work, 

NiMn2O4(NMO) is synthesised by microwave 

assisted co-precipitation.  The working electrodes 

are prepared from the synthesised spinel NMO.  

The electrochemical performance of the NMO 

nanoparticles has been evaluated in KOH 

electrolyte at 1M, 3M and 6M concentration. 

2. EXPERIMENTAL DETAILS 

2.1. Synthesis of NMO NPs by microwave assisted 
co-precipitation method  

NMO nanoparticles were prepared through 
microwave assisted co-precipitation method. 0.5 
molar solutions of Manganese (II)chloride and 
Nickel (II)chloride were mixed and was stirred in a 
magnetic stirrer for 15 minutes. The molar ratio of 
metal cations Ni: Mn was maintained at 1:2 in the 
solution.  Then 1M NaOH is added to the metal salt 
solution. After the complete addition of NaOH, it is 
then heated for 10 minutes in a microwave oven. 
The obtained mixed metal hydroxide is cooled, 
filtered and dried in an air oven at 80

o
C for 24 

hours. The mixed metal hydroxide is converted into 
mixed metal oxide, NiMn2O4(NMO) by heating it in 
a muffle furnace at 500

o
C for 5 hours. 

2.2 Characterizations 

The functional groups present in the sample 

are analysed using FT-IR spectroscopy, performed 

in Perkin-Elmer ‘Spectrum Two’ FT-IR Spectro-

meter. X-ray diffraction (XRD) studies of the NMO 

was done by Rigaku Miniflex-600 benchtop 

diffractometer with a Cu Kα radiation source (λ = 

1.542 Å) in the range 10−90°. The chemical 

composition is studied by XPS analysis performed 

in Thermofisher Scientific ESCA- Lab, X- ray pho-

toelectron Spectrometer.  The surface morphology 

of the sample is analysed using FESEM with EDX 

(CARL ZEISS   USA, resolution 1.5nm).  BET 

(Brunauer-Emmett-Teller) and BJH (Barrett, 

Joyner, and Halenda) analyses (Altamira 

Instruments, Inc) were carried out to evaluate 

surface area and pore size distribution using 

nitrogen adsorption-desorption isotherms. The 

Electrochemical tests are performed in BioLogic 

VSP electrochemical workstation with three 

electrode system. Nickel foam casted with the 

active material (NiMn2O4) act as the working 

electrode, while platinum wire and Ag/AgCl 

electrode are used as counter and reference 

electrodes respectively. 

2.3. Fabrication of working electrode and 
electrochemical study 

Before the preparation of electrode, the Ni-
foam (1 cm X 1 cm) was cleaned with detergent, 
ethanol, concentrated hydrochloric acid and 
washed several times with DI water to eliminate the 
impurities and surface oxidant contents. To prepare 
the working electrodes, the electrode material 
(80%), polyvinylidene fluoride binder (10%) and 
carbon black (10%) were first mixed together using 
a mortar-pestle to make slurry, using N-methyl-2-
pyrrolidinone solvent.  This slurry was drop casted 
into Ni-foam (1 cm X 1 cm) and dried at 120

◦
C for 5 

hours. The prepared electrodes were used for 
electrochemical characterizations.  

The electrochemical performance of the 

prepared electrode material was tested through CV 

techniques. The electrochemical tests are 

performed in BioLogic VSP electrochemical 

workstation with three electrode system.  Nickel 

foam casted with an active electrode material 

(NiMn2O4) act as working electrode, while Platinum 

wire and Ag/AgCl electrode are used as counter 

and reference electrodes respectively. The CV 

measurements were carried over a potential 

window -0.4 to 0.6V in KOH aqueous electrolyte in 

different concentration at scan rate from 5 mV/s to 

100 mV/s. EIS measurement was carried over wide 

frequency range of 200KHz to 100mHz applying an 

AC voltage of 1 mV. 
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3. RESULTS AND DISCUSSIONS 

3.1. FT-IR analysis 

The FT-IR spectra of NiMn2O4 is shown in (Fig. 
1). A broad peak at 3435 cm

-1
which can be 

attributed to O–H vibration and signifies that 
absorbed moisture exists at the surface of the 
NMO nanoparticles. The intense band observed at 
582 cm

-1
 attributed to the vibration of Ni-O atoms in 

the tetrahedral group, whereas the band at 497 cm
-

1
 assigned to the vibrational mode of Ni-Mn-O 

atoms [18] FT-IR analysis revealed the presence of 
spinel NMO in the synthesized material.  
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Figure 1. FTIR Spectrum of NMO 

3.2. XRD Analysis 

The structure of the NiMn2O4 is analysed by 
XRD (Fig. 2). The diffraction peaks 18.1°, 24.73°, 
29.11 33.72°, 36.6°, 42°, 50.65°, 55.1°, 63.94°, 
65.8° and  72,28°corresponded to the (111), (200), 
(220),(311),(222) ,(400) ,(422),(511), (440),(531)      
and (533)diffraction planes, which can be indexed 
into the face- centred cubic phase of NiMn2O4. The 
obtained XRD patterns of NMO powders are well-
matched with a face-centred cubic spinel crystal 
structure (JCPDS no. 71-0852) belonging to the 
space group Fd-3 m. 
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Figure 2. XRD pattern of NMO 

3.3. XPS analysis 

The chemical composition of the prepared 
NMO is analysed by XPS. The narrow resolution 
survey spectrum (Fig 3a) of the synthesised 
material shows the presence of peaks of Ni, Mn, O 
and C elements. The signal peak of C element 
attributed to the foreign carbon contamination of 
material on exposure to atmosphere. The energy 
spectrum of Ni 2p (Fig. 3b) shows two spin–orbit 
peaks with the binding energies of 854 eV and 872 
eV, corresponding to the peaks of Ni 2p

3/2 
and Ni 

2p
1/2 

were assigned to the Ni
2+

 state and two 
satellite half peaks around 861 and 879 eV, were 
assigned to the Ni

3+
 state [19,20,21]. The Mn 2p 

spectrum peaks in Fig. 3c) show that the Mn 2p 
region consists of a spin–orbit doublet with Mn 2p

1/2 

and Mn 2p
3/2 

peaks with the binding energies of 
653 eV and 641 eV, were assigned to the Mn

3+
 and 

Mn
2+

 states. The energy spectrum of O 1s (Fig.3d), 
the peaks located at 529 eV and 531 eV can be 
ascribed to the metal–O bond and the H–O–H 
bond, respectively [20,21]. Combined with XRD 
analysis it can be confirmed that the prepared 
product is pure spinel NiMn2O4.  
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Figure 3. XPS spectra for the as-prepared NiMn2O4: (a) a total survey, (b) Ni 2p, (c) Mn 2p, and (d) O 1s 

 

3.4. Brunauer-Emmett-Teller (BET)and Barrett-
Joyner-Halenda (BJH) analyses 

BET analysis is performed to examine the 

specific surface area of the NMO.  The specific 

surface area of the synthesised NMO is analysed 

by N2 adsorption-desorption at 77K. The nitrogen 

adsorption-desorption isotherm for NMO is dis-

played in Fig 4 (a). From the BET analysis surface 

area was calculated to be 10.513 m
2
g

-1
. The pore 

size distribution of NMO is analysed through BJH 

(Barrett, Joyner, and Halenda) method and is 

displayed in Fig 4 (b). The average pore diameter 

of NMO was evaluated as 8.55nm in the mesopo-

rous region of NMO. The mesoporous nature of the 

electrode material facilitates rapid charge transport 

across the electrode-electrolyte interface. 
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Figure 4. a) BET Nitrogen adsorption-desorption isotherms of NMO, b) Pore size distribution curve of NMO 

 

3.5. Surface Morphology Analysis 

Surface morphology analysis of the synthesised electrode material is analysed using FE-SEM (Figure 

5.) and it exhibited nano crystalline nature. The X-ray energy dispersive spectrum (EDAX) (Fig. 5(d)) 

confirms that the Ni, Mn and O elements at a molar ratio of 1: 2: 4 co-exist in the final product, which 

further confirms that the obtained product is NiMn2O4. 
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a) 

b) 

c) 

Figure 5. FE-SEM micrographs of the NMO at 
different magnification(a) (b)and (c)  

 

Figure 5(d). EDAX spectrum of NMO 

3.6. Electrochemical characterizations 

3.6.1 Cyclic voltammetry (CV) 

The electrochemical performance of the as-
prepared NiMn2O4 for supercapacitor applications 
was evaluated by cyclic voltammetry in various 
concentrations of KOH electrolyte (1M, 3M and 6M) 
at different scan rates, as shown in Fig. 6. 
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c) 
Figure.6. CV plot of NMO electrodes in (a)1M, 

(b)3M and (c)6MKOH electrolyte 
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The presence of redox peaks in the CV plots of 
the NiMn2O4 electrodes is because of the faradic 
reactions taking place at the electrode–electrolyte 
interface [22]. CV curves exhibit reversibility and 
the current increases on increasing the scan rate. 
The electrochemical redox reactions of NiMn2O4 
electrodes in KOH electrolytes are given equation 
(1) and (2) 

NiMn2O4 + OH– + H2O ↔ NiOOH + 2MnOOH + 2e
-  

 (1) 

MnOOH + OH
–
↔MnO2 + H2O + e

-  
 (2) 

The Specific capacitance of NiMn2O4 

electrodes is calculated by Equation (3) 

 (3) 

where the numerator indicated the total charge 

enclosed by the CV curve, (v2 -v1) is the working 

potential window, m is the mass, and ‘s’ is the scan 

rate. 

The area under the CV curve is directly 
proportional to the specific capacitance of the 
electrode material. The specific capacitance of the 
NMO electrodes in 1 M KOH electrolyte is 
determined as 290.63, 218.99, 170.39, 115.96 and 
89.33F/g for scan rate 5, 10, 20, 50 and 100 mV/s 
respectively. From CV curve it is seen that area of 
the CV curve of the NMO electrode in 6 M KOH is 
larger than that of 1 M and 3 M KOH. With an 
increase in the concentration of KOH electrolyte 
from 1 M to 6 M, the specific capacitance of the 
NMO electrode increases from 290.56 F/g to 
751.57F/g at scan rate of 5mV/s. The slower scan 
rate allows slower process that takes a lot of time 
while the faster scan rate makes the process 
faster. However, higher capacitance is generally 
achieved at lower scan rates. This is because 
greater number of electrolyte ions can penetrate 
into the electrode pores for longer time at lower 
scan rates [23].  

Table1. Summarizes the specific capacitance values 

of the NMO electrode material determined 
from the CV plots at different scan rates in 
1M, 3M and 6M KOH electrolyte 

Scan rate(mV/s) 
Specific Capacitance F/g 

1M KOH 3M KOH 6M KOH 

5 290.63 470.98 751.57 

10 218.99 305.05 521.65 

20 170.39 208.11 363.45 

50 115.96 135.03 164.18 

100 89.33 95.98 101.60 

Table1 summarizes the specific capacitance 

values of the NMO electrode material determined 

from the CV plots at scan rates of 100mV/s to 

5mV/s in 1 M, 3M and 6 M KOH electrolyte. Fig.6. 

(d)displays the plot of specific capacitance the 

NMO electrode vs. scan rate, in 1 M, 3 M, and 6 M 

KOH.  From the plot it reveals that lower scan rate 

has achieved higher specific capacitance and as 

the concentration of KOH increases from 1M to 6M 

specific capacitance also increases. 
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Figure 6(d). Plot of specific capacitance the NMO 
electrode vs. scan rate, in 1 M, 3M, and 6 M KOH 

electrolyte 

3.6.2. Electrochemical impedance spectroscopy 
(EIS) 

The electrochemical performance of the active 

material was further examined by EIS. This study 

has been performed for analysing resistance that 

occurs due to charge transportation and diffusion of 

active material. The Nyquist plot for NMO elec-

trodes obtained in various concentrations of KOH 

(1M,3M and 6M) are shown in Fig.7. From the 

Nyquist plots, the semicircle at a high frequency 

and straight line at low frequency   region    are 

indicating the capacitive behaviour of the electrode 

material. The x- intercept with the starting curve at 

higher frequency region is called effective series 

resistance (Rs). It is usually exerted as a combi-

nation of ionic resistance in electrolyte, contact 

resistance of the active material to the current 

collector and the intrinsic resistance of the active 

material. The semicircle at high frequency region, 

implies the charge transfer resistance (Rct) at 

electrode electrolyte interface. The Rct value could 

be directly measured from the diameter of the 

semicircle [24]. The values of Rs and Rct evaluated 

from EIS study are 0.85Ω and 1.20Ω in 1M KOH, 

0.57 Ω and 0.87 Ω in 3M KOH and 0.34 Ω and 0.42 

Ω in 6M KOH electrolyte. The lower values of Rs 
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and Rct is obtained for electrode material in 6M 

KOH and NMO electrodes exhibit enhanced 

electrochemical performance in 6M KOH over 1M 

and 3M KOH. 
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Figure 7. EIS plot of NMO electrodes in a) 1M KOH 
b) 3M KOH and c) 6M KOH 

4. CONCLUSIONS 

In the present work, NiMn2O4(NMO) nano-

particles are prepared by microwave assisted co-

precipitation. The XRD study confirms the cubic 

spinel structure for NiMn2O4. The mesoporous 

nature of the NMO electrode material was 

confirmed through BET analysis with a specific 

surface area of 10.513 m
2
g

-1
and an average pore 

diameter of 8.55nm. The maximum specific 

capacitance of 751.57 F/g is obtained for electrode 

material in 6M KOH at scan rate of 5mV/s. The 

lower values of Rs and Rct is obtained for 

electrode material in 6M KOH and NMO electrodes 

exhibit enhanced electrochemical performance in 

6M KOH. The results demonstrate that the spinel 

NMO NPs are promising candidates for fabricating 

efficient electrochemical capacitors. 
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IZVOD 

SINTEZA NiMn2O4 KAO ELEKTRODNOG MATERIJALA ZA SUPER 
KONDENZATORSKE PRIMENE 

U ovom radu, spinel NiMn2O4  e    e n   in e i    n  e        -  e i i   i e          
 i        ne  e ni e, n   n čeg   e    e i       in  i   n  500°C.  K i    n            i   i       
funkcionalnih grupa u NiMn2O4 okarakterisani su difrakcijom rendgenskih zraka (XRD) i 
infracrvenom spektroskopijom    i e  e    n       i e    -   . M      gi        ine  e i  i i  n  
             e i i ne   eni     e e e tronske mikroskopije (FE SEM).    BE   n  i e i   č n    
je d       in       ine i   e n i   ečni        e       nih NMO n n če  i   i n  i 10,513  2g-
1 i 8,55 nm. Elektrohemijske performanse materijala kao elektrodnog materijala za primenu u 
   e   n en     i    n  i i  ne     i  ičn         e  i     CV  i   e        i    
e e    he i   e i  e  n e  E   .   e i ični      i e  NMO e e     e  e    e       290,56 F/g 
na 751,57 F/g sa po e  n e    n en    i e     M KOH na 6M KOH pri brzini skeniranja od 
5mV/s. Ovi rezultati ukazuju na spinel NiMn2O4 kao kandidata koji   e           i   i e    
skladištenje energije visokih performansi. 
Ključne reči: Mikrotalasna metoda, spinel, NiMn2O4, elektrohemijske performanse,   e i ičn  
kapacitivnost 
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